Skip to main content
Log in

A Critical Evaluation of T m(FTIR) Measurements of High-Concentration IgG1 Antibody Formulations as a Formulation Development Tool

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Fourier-transform infrared (FTIR) spectroscopy was applied for the determination of protein melting temperature (T m(FTIR)) and to assess the stability predictability of a 100-mg/mL liquid IgG1 antibody formulation.

Methods

T m(FTIR) values of various formulations (different pH, buffers, excipients) were compared to the results of a stability study under accelerated conditions (40°C/75% relative humidity), using size-exclusion high-performance liquid chromatography (SE-HPLC) and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) for the detection of soluble aggregates and covalent modifications.

Results

The highest T m(FTIR) was achieved at pH 5.5, and, similarly, SE-HPLC and SDS-PAGE results suggested a pH optimum between 5.5 and 6.0. Transition temperatures were comparable for all tested buffers. However, the decrease in the monomer fraction upon thermal storage was the lowest for citrate buffers. Whereas sugars and polyols resulted in an increase in T m(FTIR) and enhanced monomer fraction after storage, amino acids showed a destabilization according to SE-HPLC analysis, albeit no change or even an increase in the melting temperature was observed.

Conclusions

All examples gave evidence that T m(FTIR) values did not necessarily correspond to the storage stability at 40°C analyzed by means of SE-HPLC and SDS-PAGE. T m values, e.g., determined by FTIR, should only be employed as supportive information to the results from both real-time and accelerated stability studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Orthotech Homepage. http://www.orthobiotech.com/history.html.

  2. A. K. Pavlou M. J. Belsey (2004) ArticleTitleBiotech blockbuster forecasts to 2008 J. Commer. Biotechnol. 11 80–86

    Google Scholar 

  3. A. K. Pavlou M. J. Belsey (2005) ArticleTitleThe therapeutic antibodies market to 2008 Eur. J. Pharm. Biopharm. 59 389–396 Occurrence Handle15760719 Occurrence Handle10.1016/j.ejpb.2004.11.007

    Article  PubMed  Google Scholar 

  4. O. H. Brekke G. A. Loset (2003) ArticleTitleNew technologies in therapeutic antibody development Curr. Opin. Pharmacol. 3 544–550 Occurrence Handle14559101 Occurrence Handle1:CAS:528:DC%2BD3sXotVersbw%3D Occurrence Handle10.1016/j.coph.2003.05.002

    Article  PubMed  CAS  Google Scholar 

  5. L. J. Holt C. Herring L. S. Jespers B. P. Woolven I. M. Tomlinson (2003) ArticleTitleDomain antibodies: proteins for therapy Trends Biotechnol. 21 484–490 Occurrence Handle14573361 Occurrence Handle1:CAS:528:DC%2BD3sXot1GqsLk%3D Occurrence Handle10.1016/j.tibtech.2003.08.007

    Article  PubMed  CAS  Google Scholar 

  6. M. L. Penichet S. L. Morriso (2004) ArticleTitleDesign and engineering human forms of monoclonal antibodies Drug Dev. Res. 61 121–136 Occurrence Handle1:CAS:528:DC%2BD2cXms1Gmtrw%3D Occurrence Handle10.1002/ddr.10347

    Article  CAS  Google Scholar 

  7. M. K. Robinson L. M. Weiner G. P. Adams (2004) ArticleTitleImproving monoclonal antibodies for cancer therapy Drug Dev. Res. 61 172–187 Occurrence Handle1:CAS:528:DC%2BD2cXms1Gmtrs%3D Occurrence Handle10.1002/ddr.10345

    Article  CAS  Google Scholar 

  8. G. A. Lazar S. A. Marshall J. J. Plecs S. L. Mayo J. R. Desjarlais (2003) ArticleTitleDesigning proteins for therapeutic applications Curr. Opin. Struct. Biol. 13 513–518 Occurrence Handle12948782 Occurrence Handle1:CAS:528:DC%2BD3sXmslemsbc%3D Occurrence Handle10.1016/S0959-440X(03)00104-0

    Article  PubMed  CAS  Google Scholar 

  9. M. J. Akers V. Vasudevan M. Stickelmeyer (2002) Formulation development of protein dosage forms S. L. Nail M. J. Akers (Eds) Development and Manufacture of Protein Pharmaceuticals Kluwer Academic/Plenum Publishers New York 47–127

    Google Scholar 

  10. T. Chen (1992) ArticleTitleFormulation concerns of protein drugs Drug Dev. Ind. Pharm. 18 1311–1354 Occurrence Handle1:CAS:528:DyaK38XkslKhu78%3D

    CAS  Google Scholar 

  11. J. L. Cleland M. F. Powell S. J. Shire (1993) ArticleTitleThe development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation Crit. Rev. Ther. Drug Carrier Syst. 10 307–377 Occurrence Handle8124728 Occurrence Handle1:CAS:528:DyaK2cXhsVektro%3D

    PubMed  CAS  Google Scholar 

  12. M. C. Manning K. Patel R. T. Borchardt (1989) ArticleTitleStability of protein pharmaceuticals Pharm. Res. 6 903–918 Occurrence Handle2687836 Occurrence Handle1:CAS:528:DyaK3cXkt1aruw%3D%3D Occurrence Handle10.1023/A:1015929109894

    Article  PubMed  CAS  Google Scholar 

  13. S. Y. Patro E. Freund B. S. Chang (2002) ArticleTitleProtein formulation and fill-finish operations Biotechnol. Annu. Rev. 8 55–84 Occurrence Handle12436915 Occurrence Handle1:CAS:528:DC%2BD38Xns1OntLs%3D Occurrence Handle10.1016/S1387-2656(02)08004-3

    Article  PubMed  CAS  Google Scholar 

  14. W. Wang (1999) ArticleTitleInstability, stabilization, and formulation of liquid protein pharmaceuticals Int. J. Pharm. 185 129–188 Occurrence Handle10460913 Occurrence Handle1:CAS:528:DyaK1MXltlCks7s%3D Occurrence Handle10.1016/S0378-5173(99)00152-0

    Article  PubMed  CAS  Google Scholar 

  15. D. J. A. Crommelin (2003) ArticleTitleDifferences between biopharmaceuticals and low-molecular weight pharmaceuticals Eur. J. Hosp. Pharm. 1 85–105

    Google Scholar 

  16. M. A. Hanson S. K. E. Rouan (1992) Introduction to formulation of protein pharmaceuticals T. J. Ahern M. C. Manning (Eds) Stability of Protein Pharmaceuticals, Part B: in vivo Pathways of Degradation and Strategies for Protein Stabilization Plenum Press New York 209–233

    Google Scholar 

  17. R. Harris S. J. Shire C. Winter (2004) ArticleTitleCommercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies Drug Dev. Res. 61 137–154 Occurrence Handle1:CAS:528:DC%2BD2cXms1Gmtr0%3D Occurrence Handle10.1002/ddr.10344

    Article  CAS  Google Scholar 

  18. S. J. Shire Z. Shakrokh J. Liu (2004) ArticleTitleChallenges in the development of high protein concentration formulations J. Pharm. Sci. 93 1390–1402 Occurrence Handle15124199 Occurrence Handle1:CAS:528:DC%2BD2cXks12iurY%3D Occurrence Handle10.1002/jps.20079

    Article  PubMed  CAS  Google Scholar 

  19. D. Hall A. P. Minton (2003) ArticleTitleMacromolecular crowding: qualitative and semiquantitative successes, quantitative challenges Biochim. Biophys. Acta 1649 127–139 Occurrence Handle12878031 Occurrence Handle1:CAS:528:DC%2BD3sXls1CjsbY%3D

    PubMed  CAS  Google Scholar 

  20. S. B. Zimmermann A. P. Minton (1993) ArticleTitleMacromolecular crowding: biochemical, biophysical, and physiological consequences Annu. Rev. Biophys. Biomol. Struct. 22 27–65 Occurrence Handle10.1146/annurev.bb.22.060193.000331

    Article  Google Scholar 

  21. C. N. Pace B. A. Shirley J. A. Thomson (1989) Measuring the conformational stability of a protein T. Creighton (Eds) Protein Structure: A Practical Approach Oxford University Press Oxford 311–330

    Google Scholar 

  22. J. T. Pelton L. R. McLean (2000) ArticleTitleSpectroscopic methods for analysis of protein secondary structure Anal. Biochem. 277 167–176 Occurrence Handle10625503 Occurrence Handle1:CAS:528:DC%2BD3cXhs1WgtA%3D%3D Occurrence Handle10.1006/abio.1999.4320

    Article  PubMed  CAS  Google Scholar 

  23. D. B. Volkin G. Sanyal C. J. Burke C. R. Middaugh (2002) Preformulation studies as an essential guide to formulation development and manufacture of protein pharmaceuticals S. L. Nail M. J. Akers (Eds) Development and Manufacture of Protein Pharmaceuticals Kluwer Academic/Plenum Publishers New York 1–46

    Google Scholar 

  24. R. L. Remmele SuffixJr. W. R. Gombotz (2000) ArticleTitleDifferential scanning calorimetry: a practical tool for elucidating the stability of liquid biopharmaceuticals Biopharm. Eur. 13 56–65

    Google Scholar 

  25. W. J. Becktel J. A. Schellmann (1987) ArticleTitleProtein stability curves Biopolymers 26 1859–1877 Occurrence Handle3689874 Occurrence Handle1:CAS:528:DyaL1cXntVykug%3D%3D Occurrence Handle10.1002/bip.360261104

    Article  PubMed  CAS  Google Scholar 

  26. M. Cauchy S. D’Aoust B. Dawson H. Rode M. A. Hefford (2002) ArticleTitleThermal stability: a means to assure tertiary structure in therapeutic proteins Biologicals 30 175–185 Occurrence Handle12217342 Occurrence Handle1:CAS:528:DC%2BD38Xms1WltL8%3D Occurrence Handle10.1006/biol.2002.0322

    Article  PubMed  CAS  Google Scholar 

  27. A. Dong B. F. Kendrick L. Kreilgard J. Matsuura M. C. Manning J. F. Carpenter (1997) ArticleTitleSpectroscopic study of secondary structure and thermal denaturation of recombinant human factor XIII in aqueous solution Arch. Biochem. Biophys. 347 213–220 Occurrence Handle9367527 Occurrence Handle1:CAS:528:DyaK2sXns1yksL4%3D Occurrence Handle10.1006/abbi.1997.0349

    Article  PubMed  CAS  Google Scholar 

  28. A. Dong T. W. Randolph J. F. Carpenter (2000) ArticleTitleEntrapping intermediates of thermal aggregation in alpha-helical proteins with low concentration of guanidine hydrochloride J. Biol. Chem. 275 27689–27693 Occurrence Handle10871628 Occurrence Handle1:CAS:528:DC%2BD3cXmsVKlurY%3D

    PubMed  CAS  Google Scholar 

  29. S. Matheus, W. Friess, and H. C. Mahler. FTIR and nDSC as analytical tools for high concentration protein formulations. Pharm. Res. In press.

  30. E. A. Cooper K. Knutson (1995) Fourier transform infrared spectroscopy investigations of protein structure J. N. Herron W. Jiskoot D. J. Crommelin (Eds) Physical Methods to Characterize Pharmaceutical Proteins Plenum Press New York 101–143

    Google Scholar 

  31. W. Surewicz H. Mantsch D. Chapmann (1993) ArticleTitleDetermination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment Biochemistry 32 389–394 Occurrence Handle8422346 Occurrence Handle1:CAS:528:DyaK3sXjsFahtQ%3D%3D Occurrence Handle10.1021/bi00053a001

    Article  PubMed  CAS  Google Scholar 

  32. A. Savitzky M. J. E. Golay (1964) ArticleTitleSmoothing and differentiation of data by simplified least squares procedures Anal. Chem. 36 1627–1639 Occurrence Handle1:CAS:528:DyaF2cXksVCjur8%3D Occurrence Handle10.1021/ac60214a047

    Article  CAS  Google Scholar 

  33. S. D. Allison B. Chang T. W. Randolph J. F. Carpenter (1999) ArticleTitleHydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding Arch. Biochem. Biophys. 365 289–298 Occurrence Handle10328824 Occurrence Handle1:CAS:528:DyaK1MXivFOksr8%3D Occurrence Handle10.1006/abbi.1999.1175

    Article  PubMed  CAS  Google Scholar 

  34. E. Y. Chi S. Krishnan T. W. Randolph J. F. Carpenter (2003) ArticleTitlePhysical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation Pharm. Res. 20 1325–1336 Occurrence Handle14567625 Occurrence Handle1:CAS:528:DC%2BD3sXnt1KitLY%3D Occurrence Handle10.1023/A:1025771421906

    Article  PubMed  CAS  Google Scholar 

  35. K. A. Dill (1990) ArticleTitleDominant forces in protein folding Biochemistry 29 7133–7155 Occurrence Handle2207096 Occurrence Handle1:CAS:528:DyaK3cXksleju78%3D Occurrence Handle10.1021/bi00483a001

    Article  PubMed  CAS  Google Scholar 

  36. P. H. Schur (1987) ArticleTitleIgG subclasses—a review Ann. Allergy 58 89–99 Occurrence Handle3544971 Occurrence Handle1:CAS:528:DyaL2sXhtlKntbk%3D

    PubMed  CAS  Google Scholar 

  37. B. Chen G. Zapata S. M. Chamow (2004) ArticleTitleStrategies for rapid development of liquid and lyophilized antibody formulations: an integrated design BioProcess Int. 2 48–52 Occurrence Handle1:CAS:528:DC%2BD2cXhtFKitL0%3D

    CAS  Google Scholar 

  38. S. O. Ugwu S. P. Apte (2004) ArticleTitleThe effect of buffers on protein conformational stability Pharm. Technol. 3 86–113

    Google Scholar 

  39. P. M. Bummer S. Koppenol (2000) Chemical and physical considerations in protein and peptide stability E. J. McNally (Eds) Protein Formulation and Delivery Marcel Dekker, Inc. New York 5–69

    Google Scholar 

  40. T. Arakawa S. N. Timasheff (1982) ArticleTitleStabilization of protein structure by sugars Biochemistry 21 6536–6544 Occurrence Handle7150574 Occurrence Handle1:CAS:528:DyaL38XmtFSktLY%3D Occurrence Handle10.1021/bi00268a033

    Article  PubMed  CAS  Google Scholar 

  41. M. Cueto M. J. Dorta O. Munguia M. Llabrés (2003) ArticleTitleNew approach to stability assessment of protein solution formulations by differential scanning calorimetry Int. J. Pharm. 252 159–166 Occurrence Handle12550791 Occurrence Handle1:CAS:528:DC%2BD3sXmtVCktg%3D%3D Occurrence Handle10.1016/S0378-5173(02)00627-0

    Article  PubMed  CAS  Google Scholar 

  42. T. Arakawa Y. Kita J. F. Carpenter (1991) ArticleTitleProtein–solvent interactions in pharmaceutical formulations Pharm. Res. 8 285–291 Occurrence Handle2052513 Occurrence Handle1:CAS:528:DyaK3MXhsV2qurc%3D Occurrence Handle10.1023/A:1015825027737

    Article  PubMed  CAS  Google Scholar 

  43. B. S. Kendrick J. L. Cleland X. M. Lam T. Nguyen T. W. Randolph M. C. Manning J. F. Carpenter (1998) ArticleTitleAggregation of recombinant human interferon gamma: kinetics and structural transitions J. Pharm. Sci. 87 1069–1076 Occurrence Handle9724556 Occurrence Handle1:CAS:528:DyaK1cXkvVKjtrw%3D Occurrence Handle10.1021/js9801384

    Article  PubMed  CAS  Google Scholar 

  44. B. S. Kendrick T. Li B. S. Chang (2003) Physical stabilization of proteins in aqueous solution J. F. Carpenter M. C. Manning (Eds) Rational Design of Stable Protein Formulations: Theory and Practice Kluwer Academic/Plenum Publishers New York 61–84

    Google Scholar 

  45. S. B. Petersen V. Jonson P. Fojan R. Wimmer S. Pedersen (2004) ArticleTitleSorbitol prevents the self-aggregation of unfolded lysozyme leading to an up to 13°C stabilisation of the folded form J. Biotechnol. 114 269–278 Occurrence Handle15522436 Occurrence Handle1:CAS:528:DC%2BD2cXptFOnur0%3D Occurrence Handle10.1016/j.jbiotec.2004.07.004

    Article  PubMed  CAS  Google Scholar 

  46. S. Singh J. Singh (2003) ArticleTitleEffect of polyols on the conformational stability and biological activity of a model protein lysozyme AAPS PharmSciTech 4 E42 Occurrence Handle14621974 Occurrence Handle10.1208/pt040342

    Article  PubMed  Google Scholar 

  47. N. Timasheff (1998) ArticleTitleControl of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated Adv. Protein Chem. 51 355–432 Occurrence Handle9615174 Occurrence Handle1:CAS:528:DyaK1cXksVSls7s%3D Occurrence Handle10.1016/S0065-3233(08)60656-7

    Article  PubMed  CAS  Google Scholar 

  48. S. N. Timasheff T. Arakawa (1989) Stabilization of protein structure by solvents T. E. Creighton (Eds) Protein Structure Oxford University Press Oxford 331–345

    Google Scholar 

  49. D. Wong J. Parasrampuria (1997) ArticleTitlePharmaceutical excipients for the stabilization of proteins Pharm. Technol. 10 52–56 Occurrence Handle1:CAS:528:DyaK2sXns1Onsbw%3D

    CAS  Google Scholar 

  50. N. Timasheff (1993) ArticleTitleThe control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22 67–97 Occurrence Handle8347999 Occurrence Handle1:CAS:528:DyaK3sXlsFCjurk%3D Occurrence Handle10.1146/annurev.bb.22.060193.000435

    Article  PubMed  CAS  Google Scholar 

  51. T. Arakawa S. J. Prestrelski W. C. Kenney J. F. Carpenter (2001) ArticleTitleFactors affecting short-term and long-term stabilities of proteins Adv. Drug Deliv. Rev. 46 307–326 Occurrence Handle11259845 Occurrence Handle1:CAS:528:DC%2BD3MXitVOhsLc%3D Occurrence Handle10.1016/S0169-409X(00)00144-7

    Article  PubMed  CAS  Google Scholar 

  52. S. N. Timasheff (1992) ArticleTitleSolvent effects on protein stability Curr. Opin. Struct. Biol. 2 35–39 Occurrence Handle10.1016/0959-440X(92)90173-5

    Article  Google Scholar 

  53. J. F. Carpenter B. S. Kendrick B. S. Chang M. C. Manning T. W. Randolph (1999) Inhibition of stress-induced aggregation of protein therapeutics J. N. Abelson C. M. Simpson (Eds) Methods in Enzymology: Amyloid, Prions, and Other Protein Aggregates Academic Press San Diego 236–255

    Google Scholar 

  54. D. M. Byler H. Susi (1986) ArticleTitleExamination of the secondary structure of proteins by deconvolved FT-IR Biopolymers 25 469–487 Occurrence Handle3697478 Occurrence Handle1:CAS:528:DyaL28Xht1GqtLc%3D Occurrence Handle10.1002/bip.360250307

    Article  PubMed  CAS  Google Scholar 

  55. R. L. Remmele SuffixJr. N. S. Nightlinger S. Srinivasan W. R. Gombotz (1998) ArticleTitleInterleukin-1 receptor (IL-1R) liquid formulation development using differential scanning calorimetry Pharm. Res. 15 200–208 Occurrence Handle9523304 Occurrence Handle1:CAS:528:DyaK1cXhsFCnt70%3D Occurrence Handle10.1023/A:1011902215383

    Article  PubMed  CAS  Google Scholar 

  56. A. Papadimitrou. Liquid pharmaceutical composition containing an erythropoietin derivative. PCT/EP2001/005187 (2001).

  57. C. O. Fagain (1995) ArticleTitleUnderstanding and increasing protein stability Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1252 1–14 Occurrence Handle10.1016/0167-4838(95)00133-F

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Andrea Hawe for her assistance in the experimental work and Sylvia Schnabblegger for the kind proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Friess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matheus, S., Mahler, HC. & Friess, W. A Critical Evaluation of T m(FTIR) Measurements of High-Concentration IgG1 Antibody Formulations as a Formulation Development Tool. Pharm Res 23, 1617–1627 (2006). https://doi.org/10.1007/s11095-006-0283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-0283-9

Key words

Navigation