Skip to main content
Log in

Isostatic Ultra-High-Pressure Effects on Supercooled Melts in Colloidal Triglyceride Dispersions

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

Colloidal triglyceride dispersions can form metastable supercooled melts that need tedious tempering processes to be transformed into a crystalline state. We investigated the possibility of transforming the supercooled melts into crystals in a short time by treatment with isostatic high pressure.

Methods

Nanosized supercooled melts of triglycerides in aqueous dispersions (prepared by high-pressure homogenization) were exposed to isostatic ultrahigh pressure for short periods to initialize crystallization processes. The dispersions were analyzed with different appropriate measuring methods such as differential scanning calorimetry, nuclear magnetic resonance, X-ray scattering, and electron paramagnetic resonance. The resulting particle sizes were estimated by photon correlation spectroscopy and transmission electron microscopy.

Results

The results of differential scanning calorimetry, X-ray, and nuclear magnetic resonance experiments show the induction of triglyceride particle crystallization by high-pressure treatment. Electron paramagnetic resonance spectroscopy shows that the triglyceride crystallization coincides with relocation of the lipophilic probe into a more polar environment. Transmission electron microscopy micrographs show the transformation of supercooled liquid particles into crystallized anisotropic particles.

Conclusion

Crystal transformation in nanoscaled systems can be delayed for months, depending on thematerials and the composite. It is shown that isostatic high-pressure treatment can be a valuable method to induce, accelerate, and control crystallization processes in specific colloidal triglyceride dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

HHP:

high hydrostatic pressure

HP:

high pressure

HPH:

high pressure homogenization

IUHP:

isostatic ultrahigh pressure

LCT:

long chain triglycerides

SLN:

solid lipid nanoparticles

References

  1. M. E. G. Hendrickx D. Knorr (2003) Ultra High Pressure Treatments of Foods Kluwer Academic/Plenum New York

    Google Scholar 

  2. E. Frede W. Buchheim (2000) ArticleTitleThe influence of high pressure upon the phase behaviour of milk-fat and milk-fat fractions Milchwissenschaft 55 IssueID12 683–686

    Google Scholar 

  3. K. Schrader W. Buchheim (1998) ArticleTitleHigh-pressure effects on the colloidal calcium phosphate and the structural integrity of micellar casein in milk. Part 2. Kinetics of the casein micelle disintegration and protein interactions in milk Kiel. Milchwirtsch. Forschungsber. 50 IssueID1 79–88

    Google Scholar 

  4. H. Ludwig, H. Stricker, and G. Entenmann (Boehringer Ingelheim KG, Germany; Boehringer Ingelheim International GmbH). Pressure-Sterilization of Polymer Medical Articles. European patent application, 1990, 8 pp.

  5. J. L. Silva D. Foguel M. Suarez A. M. O. Gomes A. C. Oliveira (2004) ArticleTitleHigh-pressure applications in medicine and pharmacology J. Phys.: Condens. Matter 16 S929–S944 Occurrence Handle10.1088/0953-8984/16/14/002

    Article  Google Scholar 

  6. I. Brigger L. Armand-Lefevre P. Chaminade M. Besnard Y. Rigaldie A. Largeteau A. Andremont L. Grislan G. Demazeau P. Couvreur (2003) ArticleTitleThe stenlying effect of high hydrostatic pressure on thermally and hydrolytically labile nanosized carriers Pharm. Res. 20 IssueID4 674–683 Occurrence Handle10.1023/A:1023267304096 Occurrence Handle12739778

    Article  PubMed  Google Scholar 

  7. J. B. Sahari B. Parsons I. M. Ward (1985) ArticleTitleThe hydrostatic extrusion of linear polyethylene at high temperatures and high pressures J. Mater. Sci. 20 IssueID1 346–354 Occurrence Handle10.1007/BF00555928

    Article  Google Scholar 

  8. H. Bunjes M. Drechsler M. H. J. Koch K. Westesen (2000) ArticleTitlePhase separation within solid lipid nanoparticles loaded with high amounts of ubidecarenone (Q10) Proc. Int. Symp. Control. Release Bioact. Mater. 27 1126–1127

    Google Scholar 

  9. H. Bunjes M. Drechsler H. M. Koch K. Westesen (2001) ArticleTitleIncorporation of the model drug ubidecarenone into solid lipid nanoparticles Pharm. Res. 18 IssueID3 287–293 Occurrence Handle10.1023/A:1011042627714 Occurrence Handle11442266

    Article  PubMed  Google Scholar 

  10. K. Westesen H. Bunjes (1996) ArticleTitleCrystallization tendency and polymorphic transitions in triglyceride nanoparticles Int. J. Pharm. 129 IssueID1,2 159–173 Occurrence Handle10.1016/0378-5173(95)04286-5

    Article  Google Scholar 

  11. A. Lippacher R. H. Müller K. Mäder (2004) ArticleTitleLiquid and semisolid SLN dispersions for topical application: rheological characterization Eur. J. Pharm. Biopharm. 58 IssueID3 561–567 Occurrence Handle10.1016/j.ejpb.2004.04.009 Occurrence Handle15451530

    Article  PubMed  Google Scholar 

  12. W. Mehnert K. Mäder (2001) ArticleTitleSolid lipid nanoparticles. Production, characterization and applications Adv. Drug Deliv. Rev. 47 165–196 Occurrence Handle10.1016/S0169-409X(01)00105-3 Occurrence Handle11311991

    Article  PubMed  Google Scholar 

  13. K. Westesen H. Bunjes (1995) ArticleTitleDo nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int. J. Pharm. 115 129–131 Occurrence Handle10.1016/0378-5173(94)00347-8

    Article  Google Scholar 

  14. K. Jores W. Mehnert M. Drechsler H. Bunjes C. Johann K. Mäder (2004) ArticleTitleInvestigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy J. Control. Release 95 IssueID2 217–227 Occurrence Handle10.1016/j.jconrel.2003.11.012 Occurrence Handle14980770

    Article  PubMed  Google Scholar 

  15. M. Takeuchi S. Ueno K. Sato (2003) ArticleTitleSynchrotron radiation SAXS/WAXS study of polymorph-dependent phase behavior of binary mixtures of saturated monoacid triacylglycerols Cryst. Growth Des. 3 IssueID3 369–374 Occurrence Handle10.1021/cg025594r

    Article  Google Scholar 

  16. K. Jores W. Mehnert K. Mäder (2003) ArticleTitlePhysicochemical investigations on solid lipid nanoparticles (SLN) and on oil-loaded solid lipid nanoparticles: a NMR- and ESR-study Pharm. Res. 20 IssueID8 1274–1283 Occurrence Handle10.1023/A:1025065418309 Occurrence Handle12948026

    Article  PubMed  Google Scholar 

  17. K. Mäder H. M. Swartz R. Stoesser H. H. Borchert (1994) ArticleTitleThe application of EPR spectroscopy in the field of pharmacy Pharmazie 49 IssueID2–3 97–101

    Google Scholar 

  18. C. Schwarz W. Mehnert J. S. Lucks R. H. Müller (1994) ArticleTitleSolid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization J. Control. Release 30 IssueID1 83–96 Occurrence Handle10.1016/0168-3659(94)90047-7

    Article  Google Scholar 

  19. R. H. Müller C. Schwarz A. Mühlen Particlezur W. Mehnert (1994) ArticleTitleIncorporation of lipophilic drugs and drug release profiles of solid lipid nanoparticles (SLN) Proc. Int. Symp. Control. Release Bioact. Mater. 21 146–147

    Google Scholar 

  20. S. A. Wissing R. H. Müller (2002) ArticleTitleThe development of an improved carrier system for sunscreen formulations based on crystalline lipid nanoparticles Int. J. Pharm. 242 IssueID1–2 373–375 Occurrence Handle10.1016/S0378-5173(02)00219-3 Occurrence Handle12176282

    Article  PubMed  Google Scholar 

  21. S. A. Wissing R. H. Müller (2001) ArticleTitleSolid lipid nanoparticles (SLN)—a novel carrier for UV blockers Pharmazie 56 IssueID10 783–786 Occurrence Handle11683123

    PubMed  Google Scholar 

  22. C. Olbrich R. H. Müller K. Tabatt O. Kayser C. Schulze R. Schade (2002) ArticleTitleStable biocompatible adjuvants—a new type of adjuvant based on solid lipid nanoparticles: a study on cytotoxicity, compatibility and efficacy in chicken ATLA. Altern. Lab. Anim. 30 IssueID4 443–458

    Google Scholar 

  23. M. Schütt E. Frede W. Buchheim (1995) ArticleTitleFat crystallization in the emulsified state under high hydrostatic pressure Kiel. Milchwirtsch. Forschungsber. 47 IssueID3 209–220

    Google Scholar 

  24. W. Buchheim E. Frede (1996) ArticleTitleInfluence of high pressure treatment of emulsified fats on crystallization Dmz, Lebensm. Ind. Milchwirtsch. 117 IssueID5 228–237

    Google Scholar 

  25. W. Buchheim K. Schrader C. V. Morr E. Frede M. Schütt (1996) ArticleTitleEffects of high pressure on the protein, lipid and mineral phase of milk Int. Dairy Fed. Spec. Issue 9602 202–213

    Google Scholar 

Download references

Acknowledgments

The authors cordially thank Dr. Günter Förster (Institute of Physical Chemistry, Martin Luther University Halle) for the X-ray scattering support, Dr. Dieter Ströhl (Institute of Organic Chemistry, Martin Luther University Halle) for the NMR measurements, Dr. Gerd Hause (Biocentre of the Martin Luther University Halle) for the TEM micrograph support, and Mark Freeman (Stansted Fluid Power Ltd.) for the drawings of the HP vessel and the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Mäder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blümer, C., Mäder, K. Isostatic Ultra-High-Pressure Effects on Supercooled Melts in Colloidal Triglyceride Dispersions. Pharm Res 22, 1708–1715 (2005). https://doi.org/10.1007/s11095-005-6949-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-6949-x

Key Words

Navigation