Skip to main content

Advertisement

Log in

High Pressure Processing Effects on Lipids Thermophysical Properties and Crystallization Kinetics

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

This review examines the combined pressure–thermal effects on thermophysical and crystallization properties of lipids. Pressure treatment transiently accelerates the phase transition and shifts the melting temperature of lipids by 10 °C/100 MPa–20 °C/100 MPa. It also transiently alters various thermophysical properties of lipids including density, viscosity, thermal conductivity, and specific heat. The interdependence phase transition of lipids with their corresponding thermophysical properties is highlighted. The magnitude and rate of pressure application influences the mechanism of lipid crystallization under pressure. For example, slow multi-step modest pressure buildup (100–200 MPa) promotes heterogeneous nucleation and slow crystallization which result in stable crystal structures. Increasing the magnitude of pressure by 400–500 MPa accelerates the nucleation rate significantly. On the other hand, rapid single-step pressurization, regardless of pressure level, induces instantaneous volumetric crystallization of less stable crystal structure which is subsequently modified into stable crystal polymorphs during depressurization. High pressure crystallization is also influenced by temperature, pressure holding time, compression rate, compression cycle, and lipid compositions. The effects of pressure treatment are more pronounced in saturated fatty acids compared to unsaturated ones, and it is shown that triglycerides crystallize more slowly under pressure than free fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Acosta GM, Smith RL, Arai K (1996) High-pressure PVT behavior of natural fats and oils, trilaurin, triolein, and n -tridecane from 303 K to 353 K from atmospheric pressure to 150 MPa. J Chem Eng Data 41:961–969

    Article  Google Scholar 

  2. Adrjanowicz K, Grzybowski A, Grzybowska K, Pionteck J (2014) Effect of high pressure on crystallization kinetics of van der Waals liquid: an experimental and theoretical study. Cryst Growth Des 14:2097–2104

    Article  CAS  Google Scholar 

  3. Afoakwa EO, Paterson A (2011) Tempering, polymorphism and fat crystallization during industrial chocolate manufacture: regimes, behaviours and their effects on finished chocolate quality. In: Comeau MA (ed) New topics in food engineering. Nova Science Publishers, Inc., New York, pp 13–34

    Google Scholar 

  4. Balasubramaniam VM, Barbosa-Canovas GV, Lelieveld H (2016) High pressure processing of food-principles, technology and application. Springer, New York

    Book  Google Scholar 

  5. Balasubramaniam VM, Martínez-Monteagudo SI, Gupta R (2015) Principles and application of high pressure-based technologies in the food industry. Annu Rev Food Sci Technol 6:435–462

    Article  CAS  Google Scholar 

  6. Balny C, Masson P (1993) Effects of high pressure on proteins. Food Rev Int 9:611–628

    Article  CAS  Google Scholar 

  7. Barlow AJ, Harrison G, Kim MG, Lamb J (1973) Pressure dependencies of the viscoelastic properties of castor oil. J Chem Soc Faraday Trans 2(69):1446–1453

    Article  Google Scholar 

  8. Bayés-García L, Patel AR, Dewettinck K, Rousseau D, Sato K, Ueno S (2015) Lipid crystallization kinetics—roles of external factors influencing functionality of end products. Curr Opin Food Sci 4:32–38

    Article  Google Scholar 

  9. Buchheim W, El-Nour AA (1992) Induction of milkfat crystallization in the emulsified state by high hydrostatic pressure. Lipid/Fett 94:369–373

    Article  CAS  Google Scholar 

  10. Buchheim W, Schütt M, Frede E (1996) High pressure effects on emulsified fats. In: Hayashi R, Balny C (eds) High pressure bioscience and biotechnology. Elsevier, Amsterdam, pp 331–333

    Google Scholar 

  11. de Hoog EHA, Ruijschop RMAJ, Pyett SP, de Kok PMT (2011) The functional attributes that fats bring to food. In: Talbot G (ed) Reducing saturated fats in foods. Woodhead Publishing, Oxford, pp 29–46

    Chapter  Google Scholar 

  12. Delgado A, Kulisiewicz L, Rauh C, Benning R (2010) Basic aspects of phase changes under high pressure. Ann N Y Acad Sci 1189:16–23

    Article  Google Scholar 

  13. Delgado A, Rauh C, Kowalczyk W, Baars A (2008) Review of modelling and simulation of high pressure treatment of materials of biological origin. Trends Food Sci Technol 19:329–336

    Article  CAS  Google Scholar 

  14. Deora NS, Misra NN, Deswal A, Mishra HN, Cullen PJ, Tiwari BK (2013) Ultrasound for improved crystallisation in food processing. Food Eng Rev 5:36–44

    Article  Google Scholar 

  15. Doona CJ, Florence FE (2007) High pressure processing of foods. IFT Press, Ames

    Book  Google Scholar 

  16. Dumay E, Lambert C, Funtenberger S, Cheftel JC (1996) Effects of high pressure on the physicochemical characteristic of dairy creams and model oil/water emulsions. LWT-Food Sci Technol 29:606–625

    Article  CAS  Google Scholar 

  17. Ferstl P, Eder C, Ruß W, Wierschem A (2011) Pressure-induced crystallization of triacylglycerides. High Press Res 31:339–349

    Article  CAS  Google Scholar 

  18. Ferstl P, Gillig S, Kaufmann C, Dürr C, Eder C, Wierschem A, Russ W (2010) Pressure-induced phase transitions in triacylglycerides. Ann N Y Acad Sci 1189:62–67

    Article  CAS  Google Scholar 

  19. Greiner M, Reilly AM, Briesen H (2012) Temperature- and pressure-dependent densities, self-diffusion coefficients, and phase behavior of monoacid saturated triacylglycerides: toward molecular-level insights into processing. J Agric Food Chem 60:5243–5249

    Article  CAS  Google Scholar 

  20. Guignon B, Aparicio C, Sanz PD (2009) Volumetric properties of sunflower and olive oils at temperatures between 15 and 55 & #xB0;C under pressures up to 350 MPa. High Press Res 29:38–45

    Article  CAS  Google Scholar 

  21. Gutzow I, Durschang B, Russel C (1997) Crystallization of glassforming melts under hydrostatic pressure and shear stress: part I crystallization catalysis under hydrostatic pressure: possibilities and limitations. J Mater Sci 32:5389–5403

    Article  CAS  Google Scholar 

  22. Hayert M, Le Bail A, Rigenbach M, Gruss E (2003) High pressure calorimetry as a tool to monitor phase transitions in foods: application to water and selected lipids. In: Winter R (ed) Advances in high pressure bioscience and biotechnology II. Springer, Berlin, pp 441–446

    Chapter  Google Scholar 

  23. Hendrickx MEG, Knorr DW (2002) Ultra high pressure treatments of foods. Academic/Plenum Publishers, New York

    Google Scholar 

  24. Heremans K (1982) High pressure effects on proteins and other biomolecules. Annu Rev Biophys Bioeng 11:1–12

    Article  CAS  Google Scholar 

  25. Himawan C, Starov VM, Stapley AGF (2006) Thermodynamic and kinetic aspects of fat crystallization. Adv Colloid Interface Sci 122:3–33

    Article  CAS  Google Scholar 

  26. Hiramatsu N, Inoue T, Suzuki M, Sato K (1989) Pressure study on thermal transitions of oleic acid polymorphs by high-pressure differential thermal analysis. Chem Phys Lipids 51:47–53

    Article  CAS  Google Scholar 

  27. Hiramatsu N, Sato T, Inoue T, Suzuki M, Sato K (1990) Pressure effect on transformation of cis-unsaturated fatty acid polymorphs 2. Palmitoleic acid (cis-9-hexadecenoic acid). Chem Phys Lipids 56:59–63

    Article  CAS  Google Scholar 

  28. Hiramatsu N, Inoue T, Sato T, Suzuki M, Sato K (1992) Pressure effect on transformation of cis-unsaturated fatty acid polymorphs. 3. Erucic acid (cis-ω9-docosenoic acid) and asclepic acid (cis-ω7-octadecenoic acid). Chem Phys Lipids 61:283–291

    Article  CAS  Google Scholar 

  29. Huppertz T, Smiddy MA, Goff HD, Kelly AL (2011) Effects of high pressure treatment of mix on ice cream manufacture. Int Dairy J 21:718–726

    Article  Google Scholar 

  30. Inoue T, Motoda I, Hiramatsu N, Suzuki M, Sato K (1996) Pressure effect on phase behavior of binary mixtures of cis-unsaturated fatty acids. Chem Phys Lipids 82:63–72

    Article  CAS  Google Scholar 

  31. Inoue T, Motoda I, Hiramatsu N, Suzuki M, Sato K (1992) Phase behavior of binary mixtures of cis-monounsaturated fatty acids with different ω-chain length. Chem Phys Lipids 63:243–250

    Article  CAS  Google Scholar 

  32. Isaacs N (1981) Liquid phase high pressure chemistry. Wiley, Chichester

    Google Scholar 

  33. Kapranov S, Pehl M, Hartmann C, Baars A, Delgado A (2003) On influence of high pressure on edible oils. Advances in high pressure bioscience and biotechnology II. Springer, Berlin, pp 453–457

    Book  Google Scholar 

  34. Kiełczyński P, Szalewski M, Balcerzak A, Rostocki AJ, Tefelski DB (2011) Application of SH surface acoustic waves for measuring the viscosity of liquids in function of pressure and temperature. Ultrasonics 51:921–924

    Article  CAS  Google Scholar 

  35. Kiełczyński P, Szalewski M, Balcerzak A, Malanowski A, Siegoczyński RM, Ptasznik S (2012) Investigation of high-pressure phase transitions in DAG (diacylglycerol) oil using the Bleustein–Gulyaev ultrasonic wave method. Food Res Int 49:60–64

    Article  CAS  Google Scholar 

  36. Kiełczyński P, Szalewski M, Balcerzak A, Wieja K, Malanowski A, Kościesza R, Tarakowski R, Rostocki AJ, Siegoczyńsk RM (2014) Determination of physicochemical properties of diacylglycerol oil at high pressure by means of ultrasonic methods. Ultrasonics 54:2134–2140

    Article  CAS  Google Scholar 

  37. Kiełczyński P, Szalewski M, Balcerzak A, Wieja K, Rostocki AJ, Siegoczyński RM, Ptasznik S (2014) Application of ultrasonic wave celerity measurement for evaluation of physicochemical properties of olive oil at high pressure and various temperatures. LWT-Food Sci Technol 57:253–259

    Article  CAS  Google Scholar 

  38. Kościesza R, Kulisiewicz L, Delgado A (2010) Observations of a high-pressure phase creation in oleic acid. High Press Res 30:118–123

    Article  CAS  Google Scholar 

  39. Kościesza R, Rostocki A, Tefelski DB, Siegoczyński RM, Zych L (2007) Observation of pressure-induced phase transitions in rapeseed oil with methyl alcohol mixtures. High Press Res 27:51–55

    Article  CAS  Google Scholar 

  40. Kościesza R, Tefelski DB, Ptasznik S, Rostocki AJ, Malanowski A, Siegoczyński RM (2012) A study of the high pressure phase transition of diacylglycerol oil by means of light transmission and scattering. High Press Res 32:323–329

    Google Scholar 

  41. Kościesza R, Siegoczyński RM, Rostocki AJ, Tefelski DB, Kos A, Ejchart W (2008) Relative permittivity behavior and temperature changes in linoleic acid during the phase transition. J Phys Conf Ser 121:1–4

    Article  Google Scholar 

  42. Kos A, Tefelski D, Siegoczyński R, Rutkowski R, Ejchart W, Wisniewski R (2005) Changes of liquid structure under pressure in oleic acid. High Press Res 25:51–56

    Article  CAS  Google Scholar 

  43. Kos A, Tefelski D, Kosciesza R, Rostocki AJ, Roszkiewicz A, Ejchart W (2007) Certain physico-chemical properties of triolein and methyl alcohol–triolein mixture under pressure. High Press Res 27:39–42

    Article  CAS  Google Scholar 

  44. Kubásek M, Houška M, Landfeld A, Strohalm J, Kamarád J, Žitný R (2006) Thermal diffusivity estimation of the olive oil during its high-pressure treatment. J Food Eng 74:286–291

    Article  Google Scholar 

  45. Landfeld A, Strohalm J, Houska M, Kyhos K, Hoke K, Zitny R (2010) Thermal diffusivity estimation of mashed potatoes and olive oil at high pressure. High Press Res 30:108–117

    Article  CAS  Google Scholar 

  46. Larsson K (1994) Lipids-molecular organization, physical functions and technical applications. The Oily Press Ltd., West Ferry, pp 7–45

    Google Scholar 

  47. Lemmon EW, Huber ML, McLinden MO (2013) NIST Standard Reference Database 23: NIST reference fluid thermodynamic and transport properties (REFPROP). Nat’l Std. Ref. Data Series (NIST NSRDS)

  48. Leu BM, Yavaş H, Kantor I, Prakapenka VB (2010) Specific heat of olive oil to 356 MPa. J Am Oil Chem Soc 87:1517–1520

    Article  CAS  Google Scholar 

  49. Maleky F (2015) Nanostructuring triacylglycerol crystalline networks under external shear fields: a review. Curr Opin Food Sci 4:56–63

    Article  Google Scholar 

  50. Marangoni AG (2005) Nucleation and crystalline growth kinetics. In: Marangoni AG (ed) Fat crystal networks. Marcel Dekker, New York, pp 21–82

    Google Scholar 

  51. Marangoni AG, Acevedo N, Maleky F, Co E, Peyronel F, Mazzanti G, Quinn B, Pink D (2012) Structure and functionality of edible fats. Soft Matter 8:1275–1300

    Article  CAS  Google Scholar 

  52. Martini S (2013) Sonocrystallization of Fats. In: Hartel RW, Clark JP, Finley JW, Rodriguez-Lazaro D, Topping D (eds) SpringerBriefs in food, health, and nutrition. Springer, New York, pp 1–64

    Google Scholar 

  53. Martini S, Awad T, Marangoni AG (2006) Structure and properties of fat crystal networks. In: Gunstone FD (ed) Modifying lipids use food. Woodhead Publishing, Cambridge, pp 142–169

    Chapter  Google Scholar 

  54. Medina-Meza IG, Barnaba C, Barbosa-Cánovas GV (2013) Effects of high pressure processing on lipid oxidation: a review. Innov Food Sci Emerg Technol 22:1–10

    Article  CAS  Google Scholar 

  55. Min S, Sastry SK, Balasubramaniam VM (2010) Compressibility and density of select liquid and solid foods under pressures up to 700 MPa. J Food Eng 96:568–574

    Article  Google Scholar 

  56. Moritoki M, Nishiguchi N, Nishida S (1997) Features of the high-pressure crystallization process in industrial use. In: Botsaris G, Toyokura K (eds) Separation and purification by crystallization. ACS Publications, Washington, pp 136–149

    Chapter  Google Scholar 

  57. Nguyen LT, Balasubramaniam VM, Sastry SK (2012) Determination of in situ thermal conductivity, thermal diffusivity, volumetric specific heat and isobaric specific heat of selected foods under pressure. Int J Food Prop 15:169–187

    Article  CAS  Google Scholar 

  58. Nosho Y, Hashimoto S, Kato M, Suzuki K (2003) A novel high pressure technology for the production of margarine. In: Winter R (ed) Advance high pressure bioscience and biotechnology II. Springer, Berlin, pp 447–451

    Chapter  Google Scholar 

  59. Nosho Y, Ueshima K, Ikehara T (2002) Process for producing fat composition. US Pat. 6,495, 189 B1

  60. Oh JH, Swanson BG (2006) Polymorphic transitions of cocoa butter affected by high hydrostatic pressure and sucrose polyesters. J Am Oil Chem Soc 83(12):1007–1014

    Article  CAS  Google Scholar 

  61. O’Brien RD (2009) Plasticization. In: O’Brien RD (ed) Fats oils formulating and processing for application, 3rd edn. CRC Press, Boca Raton, pp 170–196

    Google Scholar 

  62. Otero L, Molina-Garcia AD, Sanz PD (2000) Thermal effect in foods during quasi-adiabatic pressure treatments. Innov Food Sci Emerg Technol 1:119–126

    Article  Google Scholar 

  63. Patel AR, Dewettinck K (2015) Current update on the influence of minor lipid components, shear and presence of interfaces on fat crystallization. Curr Opin Food Sci 3:65–70

    Article  Google Scholar 

  64. Patazca E, Koutchma T, Balasubramaniam VM (2007) Quasi-adiabatic temperature increase during high pressure processing of selected foods. J Food Eng 80:199–205

    Article  Google Scholar 

  65. Pehl M, Werner F, Delgado A (2000) First visualization of temperature fields in liquids at high pressure using thermochromic liquid crystals. Exp Fluids 29:302–304

    Article  Google Scholar 

  66. Povedano I, Guignon B, Montoro ÓR et al (2014) Effects of high pressure on unsaturated fatty acids. High Press Res 34:428–433

    Article  CAS  Google Scholar 

  67. Przedmojski J, Siegoczyński RM (2002) X-ray diffraction investigation of oleic acid under high pressure. Phase Transitions 75:581–585

    Article  CAS  Google Scholar 

  68. Ramaswamy R, Balasubramaniam VM (2007) Effect of polarity and molecular structure of selected liquids on their heat of compression during high pressure processing. High Press Res 27:299–307

    Article  CAS  Google Scholar 

  69. Ramaswamy R, Balasubramaniam VM, Sastry SK (2007) Thermal conductivity of selected liquid foods at elevated pressures up to 700 MPa. J Food Eng 83:444–451

    Article  Google Scholar 

  70. Rasanayagam V, Balasubramaniam VM, Ting E, Sizer CE, Bush C, Anderson C (2003) Compression heating of selected fatty food materials during high-pressure processing. J Food Sci 68:254–259

    Article  CAS  Google Scholar 

  71. Rivalain N, Roquain J, Demazeau G (2010) Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies. Biotechnol Adv 28:659–672

    Article  CAS  Google Scholar 

  72. Rostocki AJ, Kościesza R, Tefelski DB, Kos A, Siegoczyński RM, Chruściński L (2007) Pressure-induced phase transition in soy oil. High Press Res 27:43–46

    Article  CAS  Google Scholar 

  73. Rostocki AJ, Wiśniewski R, Wilczyńska T (2007) High pressure phase transition in rape-seed oil. J Mol Liq 135:120–122

    Article  CAS  Google Scholar 

  74. Rostocki AJ, Tefelski DB, Ptasznik S (2009) Compressibility studies of some vegetable oils up to 1 GPa. High Press Res 29:721–725

    Article  CAS  Google Scholar 

  75. Rostocki A, Siegoczyński R, Kiełczynski P, Szalewski M (2010) An application of Love SH waves for the viscosity measurement of triglycerides at high pressures. High Press Res 30:88–92

    Article  CAS  Google Scholar 

  76. Rostocki AJ, Siegoczyński RM, Kiełczynski P, Szalewski M, Balcerzak A, Zduniak M (2011) Employment of a novel ultrasonic method to investigate high pressure phase transitions in oleic acid. High Press Res 31:334–338

    Article  CAS  Google Scholar 

  77. Rostocki AJ, Tarakowski R, Kiełczyński P, Szalewski M, Balcerzak A, Ptasznik S (2013) The ultrasonic investigation of phase transition in olive oil up to 0.7 GPa. J Am Oil Chem Soc 90:813–818

    Article  CAS  Google Scholar 

  78. Sangwal K (2007) Additives and crystallization processes. From fundamentals to applications. Wiley, Chichester

    Book  Google Scholar 

  79. Sato K (2001) Crystallization behaviour of fats and lipids—a review. Chem Eng Sci 56:2255–2265

    Article  CAS  Google Scholar 

  80. Sato K, Bayés-García L, Calvet T, Cuevas-Diarte MA, Ueno S (2013) External factors affecting polymorphic crystallization of lipids. Eur J Lipid Sci Technol 115:1224–1238

    Article  CAS  Google Scholar 

  81. Schaschke CJ, Allio S, Holmberg E (2006) Viscosity measurement of vegetable oil at high pressure. Food Bioprod Process 84:173–178

    Article  Google Scholar 

  82. Schmidt C, Rittmeier-Kettner M, Becker H, Ellert J, Krombach R, Schneider GM (1994) Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) at high pressures. Experimental techniques and selected results. Thermochim Acta 238:321–336

    Article  CAS  Google Scholar 

  83. Shahidi F, Miraliakbari H (2005) Omega-3 fatty acids in health and disease: part 2—health effects of omega-3 fatty acids in autoimmune diseases, mental health, and gene expression. J Med Food 8:133–148

    Article  CAS  Google Scholar 

  84. Siegoczyński RM, Wisniewski R, Ejchart W (2003) Changes of structure in castor oil under pressure. High Press Res 23:105–109

    Article  CAS  Google Scholar 

  85. Siegoczyński RM, Jedrzejewski J, Wiśniewski R (1989) Long time relaxation effect of liquid castor oil under high pressure conditions. High Press Res 1:225–233

    Article  Google Scholar 

  86. Siegoczyński RM, Rostocki AJ, Kielczyński P, Szalewski M (2008) A viscosity measurement during the high pressure phase transition in triolein. J Phys Conf Ser 121:1–5

    Article  Google Scholar 

  87. Siegoczyński RM, Wiśniewski R, Ejchart W, Jedrzejewski J (1994) Optical hysteresis in oleic acid and castor oil under pressure. High Press Res 13:93–97

    Article  Google Scholar 

  88. Siegoczyński R, Kościesza R, Tefelski DB, Kos A (2009) Molecular collapse–modification of the liquid structure induced by pressure in oleic acid. High Press Res 29:61–66

    Article  CAS  Google Scholar 

  89. Siegoczyński R, Kos A, Tefelski D, Kościesza R, Ejchart W (2007) Temperature effect upon the pressure-induced phase transformation in oleic acid. High Press Res 27:47–50

    Article  CAS  Google Scholar 

  90. Smith KW, Bhaggan K, Talbot G, van Malssen K (2011) Crystallization of fats: influence of minor components and additives. J Am Oil Chem Soc 88:1085–1101

    Article  CAS  Google Scholar 

  91. Tarakowski R, Malanowski A, Rostocki AJ, Kowalczyk M, Modzelewski P, Ptasznik S, Siegoczynski RM (2015) Could RME biodiesel be potentially harmful to modern engine? solidification process in RME. Fuel 146:28–32

    Article  CAS  Google Scholar 

  92. Tarakowski R, Malanowski A, Kościesza R, Siegoczyński RM (2014) VIS spectroscopy and pressure induced phase transitions—chasing the olive oils quality. J Food Eng 122:28–32

    Article  CAS  Google Scholar 

  93. Tefelski DB, Jastrzębski C, Wierzbicki M, Siegoczynski RM, Rostocki AJ, Wieja K, Kosciesza R (2010) Raman spectroscopy of triolein under high pressures. High Press Res 30:124–129

    Article  CAS  Google Scholar 

  94. Tefelski DB, Kulisiewicz L, Wierschem A, Delgado A, Rostocki AJ, Siegoczyński RM (2011) The particle image velocimetry method in the study of the dynamics of phase transitions induced by high pressures in triolein and oleic acid. High Press Res 31:178–185

    Article  CAS  Google Scholar 

  95. Tefelski DB, Siegoczyński RM, Rostocki AJ, Kos A, Kościesza R, Wieja K (2008) The investigation of the dynamics of the phase transformation in triolein and oleic acid under pressure. J Phys Conf Ser 121:1–6

    Article  Google Scholar 

  96. Ting E, Balasubramaniam VM, Raghubeer E (2002) Determining thermal effects in high-pressure processing. Food Technol 56:31–35

    Google Scholar 

  97. Trudell JR, Payan DG, Chin JH, Cohen EN (1975) The antagonistic effect of an inhalation anesthetic and high pressure on the phase diagram of mixed dipalmitoyl-dimyristoylphosphatidylcholine bilayers. Proc Nat Acad Sci USA 72:210–213

    Article  CAS  Google Scholar 

  98. Venkatesh MS, Raghavan GSV (2005) An overview of dielectric properties measuring techniques. Can Biosyst Eng 47:15–30

    Google Scholar 

  99. Verret C, El Moueffak A, Largeteau A, Frimigacci M, Demazeau G, Leal-Calderon F, Cansell M (2009) Effects of high pressure on anhydrous milk fat crystallization in emulsion. High Pres Res 29(1):57–60

    Article  CAS  Google Scholar 

  100. Walstra P, William K, van Vliet T (2001) Fat crystal networks. In: Garti N, Sato K (eds) Crystallization process of fats and lipid system. Marcel Dekker, New York, pp 289–328

    Google Scholar 

  101. Werner M, Baars A, Eder C, Delgado A (2008) Thermal conductivity and density of plant oils under high pressure. J Chem Eng Data 53:1444–1452

    Article  CAS  Google Scholar 

  102. Widlak N, Hartel R, Suresh N (2001) Crystallization and solidification properties of lipids. AOCS Press, Champaign

    Google Scholar 

  103. Wierzbicki M, Kościesza R, Tefelski DB, Siegoczyński RM (2010) Determination of thermodynamic parameters of oleic acid under high pressure. High Press Res 30:135–141

    Article  CAS  Google Scholar 

  104. Wiśniewski R, Jedrzejewski J, Siegoczyński RM (1994) Electric permittivity and dielectric loss of castor oil during its transformation to the high pressure phase. High Press Res 13:41–45

    Article  Google Scholar 

  105. Wiśniewski R, Jerzejewski J, Siegoczyński RM, Tkacz A (1994) Volume changes of castor oil during its transformation to the high pressure phase. High Press Res 11:385–391

    Article  Google Scholar 

  106. Wiśniewski R, Siegoczyński R, Długosz A, Przewocki M, Szymański M, Trzeciecki M (2001) Investigations of triolein under high pressure. High Temp-High Press 33:231–236

    Article  Google Scholar 

  107. Yasuda A, Mochizuki K (1992) The behavior of triglycerides under high pressure: the high pressure can stably crystallize cocoa butter in chocolate. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High pressure and biotechnology. Colloque INSERM/John Libbey Eurotext Ltd., London, pp 255–259

    Google Scholar 

  108. Yokoyama C, Tamura Y, Nishiyama Y (1998) Crystal growth rates of tricaprin and trilaurin under high pressures. J Cryst Growth 191:827–833

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author Zulkurnain gratefully acknowledges financial support from the Ministry of Higher Education, Malaysian Government. The Ohio State University Food Safety Engineering and lipid chemistry laboratories contributed to this publication. Research support is provided, in part, by USDA National Institute for Food and Agriculture HATCH projects OHO01323 and OHO01312, Ohio Agricultural Research and Development Corporation (OARDC), and the food industry. References to commercial products or trade names are made with the understanding that no endorsement or discrimination by The Ohio State University is implied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Balasubramaniam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulkurnain, M., Maleky, F. & Balasubramaniam, V.M. High Pressure Processing Effects on Lipids Thermophysical Properties and Crystallization Kinetics. Food Eng Rev 8, 393–413 (2016). https://doi.org/10.1007/s12393-016-9144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-016-9144-4

Keywords

Navigation