Skip to main content

Advertisement

Log in

Synthesis, In Silico Analysis, Antibacterial, Radical Scavenging and Antidiabetic Activities of Certain Bis-Azetidinones and Bis-Thiazolidinones

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A panel of 1,1-(phenylene)bis[3-chloro-4-(substituted phenyl)azetidin-2-ones] (4a-m) and 3,3′-(1,4-phenylene)bis[2-(substituted phenyl)thiazolidin-4-ones] (5a-m) were synthesized from Schiff base intermediates 3a-m, that were in turn prepared from reaction between p-phenylenediamine and substituted benzaldehydes. The structures of title compounds and intermediates were confirmed by IR, 1H NMR, 13C NMR and mass spectral data. The compounds were screened for antibacterial, DPPH radical scavenging and antidiabetic activities. Compounds 4f and 4a exhibited good antibacterial activity against Gram-positive bacteria, but none showed appreciable activity against Gram-negative bacteria. In DPPH scavenging assay, compounds 5f, 5e and 5a exhibited good activity. Compound 5a displayed highly significant antidiabetic activity in fructose-induced diabetes in rats. The molecular docking studies of bis-thiazolidinones with PPAR-ã revealed the fit with high binding affinity and good interactions. Docking of compound 5a was comparable to the standard drug pioglitazone. The in silico physicochemical, drug-likeness and ADME properties of title compounds were also performed and the majority of them displayed satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. http://www.statista.com/topic/1723/diabetes (Last accessed 05-03-2020).

  2. P. F. Valeron, P. L. Velasco, Med. Clin. (Barc.), 141(2), 20 – 25 (2013).

  3. M. R. Bhosle, J. R. Mali, S. Pal, et al., Bioorg. Med. Chem. Lett., 24(12), 2651 – 2654 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. R. Bhutani, D. P. Pathak, G. Kapoor, et al., Bioorg. Chem., 83(2), 6 – 19 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. S. Asghari, M. Pourshab, M. Mohseni, Monatsh für Chemie, 149(12), 2327 – 2336 (2018).

    Article  CAS  Google Scholar 

  6. M. Omar, H. H. Abdu-Allah, S. G. Abdel-Moty, Bioorg. Chem., 80, 461 – 471 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. F. Ansari, D. Idrees, M. I. Hassan, et al., Eur. J. Med. Chem., 144, 544 – 556 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. O. Guzel, A. Salman, J. Enz. Inhib. Med. Chem., 24(4), 1015 – 1023 (2009).

    Article  Google Scholar 

  9. Mishchenko, S. Shtrygol, D. Kaminskyy, et al., Scientia Pharm., 88(1), 16 (2020).

  10. D. Patel, P. Kumari, N. Patel, Eur. J. Med. Chem., 48, 354 – 362 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. N. Arya, A. Y. Jagdale, T. A. Yeramwar, et al., Eur. J. Med. Chem., 74, 619 – 656 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. I. K. Bhat, S. K. Chaithanya, P. D. Satyanarayana, et al., J. Serb. Chem. Soc., 72(5), 437 – 442 (2007).

    Article  CAS  Google Scholar 

  13. A. Deep, P. Kumar, B. Narasimhan, et al., Pharm. Chem. J., 50(1), 24 – 28 (2016).

    Article  CAS  Google Scholar 

  14. R. J. Shah, N. R. Modi, M. J. Patel, et al., Med. Chem. Res., 20(5), 587 – 594 (2011).

    Article  CAS  Google Scholar 

  15. N. B. Patel, K. K. Pathak, Med. Chem. Res., 21(8), 2044 – 2055 (2012).

    Article  CAS  Google Scholar 

  16. N. H. Chopde, J. S. Meshram, C. P. Pandhurnekar, et al., J. Heterocycl. Chem., 53(3), 824 – 831 (2016).

    Article  CAS  Google Scholar 

  17. H. Hasan, M. Akhter,W. Akhter, et al., Med. Chem. Res., 20(8), 1357 – 1363 (2010).

    Article  Google Scholar 

  18. S. K. Bhati, A. Kumar, Eur. J. Med. Chem., 43(11), 2323 – 2330 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. R. Geesala, J. K. Gangasani, M. Budde, et al., Eur. J. Med. Chem., 124, 544 – 558 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Q. C. Ren, C. Gao, Z. Xu, et al., Curr. Top. Med. Chem., 18(2), 101 – 113 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. S. Alpan, S. Zencir, I. Zupkó, et al., J. Enz. Inhib. Med. Chem., 24(3), 844 – 889 (2009).

    Article  CAS  Google Scholar 

  22. Y. N. Mabkhot, A. Barakat, A. M. Al-Majid, et al., Chem. Cent. J., 7, 112 – 120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. M. Mielczarek, R. V. Devakaram, C. Ma, et al., Org. Biomol. Chem., 12, 2882 – 2894 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. V. S. Ramya, M. H. Kallappa, S. K. Rangappa, et al., Eur. J. Med. Chem., 45(5), 1753 – 1759 (2010).

    Article  Google Scholar 

  25. P. Patel, S. Korgaokar, K. Parekh, et al., Indian J. Chem., 38(B), 696 – 700 (1999).

  26. S. Sankar, K. Divya, A. Padmaja, et al., Med. Chem., 7(11), 340 – 347 (2017).

    Article  Google Scholar 

  27. S. F. Barbuceaunu, D. C. Ilies, G. Saramet, et al., Int. J. Mol. Sci., 15(6), 10908 – 10925 (2014).

    Article  Google Scholar 

  28. OECD Guidelines-425 for the testing of chemicals 2008. https://www.oecd-ilibrary.org/environment/test-no-425-acuteoral-toxicity-up-and-down-procedure9789264071049-en (Last accessed 08-05-2020).

  29. M. O. Germoush, H. A. Elgebaly, S. Hassan, A. M. Mahmoud, Aljouf Sci. Eng. J., 286(3104), 1 – 7 (2015).

    Google Scholar 

  30. M. J. Medina, J. Bartroli, J. Alonso, et al., Anal. Lett., 17(5), 385 – 396 (1984).

    Article  CAS  Google Scholar 

  31. https://www.rcsb.org/structure/4PRG (Last accessed 16-07-2021).

  32. G. M. Morris, R. Huey, W. Lindstrom, et al., J. Comput. Chem., 16(30), 2785 – 2791 (2009).

    Article  Google Scholar 

  33. D. Hanwell, D. E. Curtis, D. C. Lonie, et al., J. Cheminform., 4(1), 1 – 7 (2012).

    Article  Google Scholar 

  34. D. S. Biovia, Discovery studio modeling environment dassault systems, San Diego, USA (2021).

    Google Scholar 

  35. http://www.swissadme.ch/ (Last accessed on18-07-2021).

  36. M. Lehrke, M. A. Lazar, Cell, 123(6), 9939 (2005).

    Article  Google Scholar 

  37. J. H. Kim, J. Song, K. W. Park, Arch. Pharmacol. Res., 38(3), 302 – 312 (2015).

    Article  CAS  Google Scholar 

  38. A. Abdul-Ghani, D. Tripathy, R. A. DeFronzo, Diab. Care, 29(5), 1130 – 1139 (2006).

    Article  CAS  Google Scholar 

  39. C. A. Lipinski, F. Lombardo, B. W. Dominy, et al., Adv. Drug Deliver. Rev., 23(1 – 3), 3 – 25 (1997).

    Article  CAS  Google Scholar 

  40. A. K. Ghose, V. N. Viswanadhan, J. J. Wendoloski, J. Combi Chem., 1(1), 55 – 68 (1999).

    Article  CAS  Google Scholar 

  41. D. F. Veber, S. R. Johnson, H. Y. Cheng, et al., J. Med. Chem., 45(12), 2615 – 2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. W. J. Egan, K. M. Merz, J. J. Baldwin, J. Med. Chem., 43(21), 3867 – 3877 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. I. Muegge, S. L. Heald, D. Brittelli, J. Med. Chem., 44(12), 1841 – 1886 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shreenivas R. Deshpande.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshpande, S.R., Mandalamari, M.T., Malagi, P.V. et al. Synthesis, In Silico Analysis, Antibacterial, Radical Scavenging and Antidiabetic Activities of Certain Bis-Azetidinones and Bis-Thiazolidinones. Pharm Chem J (2024). https://doi.org/10.1007/s11094-024-03119-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11094-024-03119-9

Keywords

Navigation