Skip to main content
Log in

Assessment of the Influences of Filipendula ulmaria Extracts Prepared by Two Methods on the Efficacy of Cytostatic Therapy

  • MEDICINAL PLANTS
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Extracts from the above-ground part of the elm-leaved meadowsweet Filipendula ulmaria (L.) Maxim. in 70% ethanol were prepared by extraction using heat (FUh) and countercurrent extraction (FU). Comparative analysis of the actions of these extracts in experiments on C57Bl/6 mice with Lewis lung carcinoma (LLC) indicated that FUh had greater efficacy when used in complex therapy with cyclophosphamide (CPX). FUh (25, 50 and 100 mg/kg) in combination with CPX increased the antitumor effect of CPX against primary tumors. No significant changes were found in the development of the metastatic process in mice given CPX and 50 and 100 mg/kg FUh; FUh at a lower dose (25 mg/kg) weakened the antimetastatic activity of CPX. FU at a dose of 25 mg/kg increased the efficacy of CPX against primary tumors, while use of FU at doses of 50 and 100 mg/kg did not influence the antitumor effect of CPX. In C57Bl/6 mice with lung cancer-67, all FUh doses studied (50, 100, and 200 mg/kg) increased the antimetastatic effect of CPX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Lima, D. Sousa, R. T. Lima, et al., Ind. Crop. Prod., 59, 149 – 153 (2014).

    Article  CAS  Google Scholar 

  2. V. N. Anisimov, M. A. Zabezhinskii, I. G. Popovich, et al., Vopr. Onkol., 58(1), 7 – 18 (2012).

    CAS  PubMed  Google Scholar 

  3. V. G. Bespalov, V. A. Alexandrov, G. I. Vysochina, et al., J. Neurooncol., 131(3), 459 – 467 (2017).

    Article  PubMed  Google Scholar 

  4. V. G. Bespalov, V. A. Alexandrov, G. I. Vysochina, et al., Anti-Cancer Agents Med. Chem., 18(8), 1177 – 1183 (2018); https://doi.org/10.2174/1871520618666180402125913.

    Article  CAS  Google Scholar 

  5. E. N. Amosova, I. V. Shilova, E. P. Zueva, O. Yu. Rybalkina, Khim. Farm. Zh., 53(5), 32 – 35 (2019); Pharm. Chem. J., 53(5), 458 – 461 (2019); https://doi.org/10.1007/s11094-019-02019-7.

  6. E. N. Amosova, I. V. Shilova, E. P. Zueva, O. Yu. Rybalkina, Khim. Farm. Zh., 54(7), 37 – 40 (2020); Pharm. Chem. J., 54(7), 721 – 724 (2020); https://doi.org/10.1007/s11094-020-02262-3.

  7. I. V. Shilova, I. A. Samylina, N. I. Suslov, Development of Nootropic Products Based on Siberian Plants, The Print Factory, Tomsk (2013).

  8. I. V. Shilova, T. G. Khoruzhaya, I. A. Samylina, Khim. Farm. Zh., 49(5), 42 – 46 (2015); Pharm. Chem. J., 49(5), 329 – 333 (2015).

  9. Directive 2010/63/EU of the European Parliament and the Council of the European Union for the Protection of Animals Used for Scientific Purposes, St. Petersburg (2012); http://www.bio.msu.ru/res/DOC365/Dir201063/Rus-LASA.pdf .

  10. Z. P. Sof_ina, A. B. Syrkin, A. Goldin, A. Klyain, Experimental Evaluation of Antitumor Drugs in the USSR and USA [in Russian], Meditsina, Moscow (1980).

  11. Guidelines for Preclinical Studies of Medicines [in Russian], A. N. Mironov (ed.), Part 1, Grif i K, Moscow (2012).

  12. S. A. Arkhipov, V. M. Yunker, E. V. Gruntenko, Studies of the Induction and Metastasis of Tumors in Experimental Animals [in Russian], Novosibirsk (1984).

  13. S. Glants, Medical-Biological Statistics [in Russian], Praktika, Moscow (1999).

  14. I. V. Shilova, N. I. Suslov, and I. A. Samylina, The Chemical Composition and Nootropic Activity of Siberian Plants [in Russian], Tomsk University Press, Tomsk (2010).

  15. I. V. Shilova, T. P. Kukina, N. I. Suslov, et al., Khim. Farm. Zh., 48(3), 26 – 30 (2014); Pharm. Chem. J., 48(3), 181 – 185 (2014).

  16. S. Caltagirone, C. Rossi, A. Poggi, et al., Int. J. Cancer, 87(4), 595 – 600 (2000); https://doi.org/10.1002/1097-0215, No. 2000081587:4.

  17. P. Ferrer, M. Asensi, R. Segarra, et al., Neoplasia, 7(1), 37 – 47 (2005); https://doi.org/10.1593/neo.04337.

  18. M. N. Alam, M. Almoyad, and F. Huq, BioMed. Res. Int., Article 4154185 (2018); https://doi.org/10.1155/2018/4154185.

  19. M. Reyes-Farias and C. Carrasco-Pozo, Int. J. Mol. Sci., 20(13), 3177 (2019); Transl. Cancer Res. https://doi.org/10.3390/ijms20123177.

  20. P. B. Bhosale, S. E. Ha, P. Vetrivel, et al., Transl. Cancer Res., 9(12), 7619 – 7631 (2020); 0.21037/tcr-20-2359.

  21. J. Maiuolo, M. Gliozzi, C. Carresi, et al., Nutrients, 13(11), Article 3834 (2021); https://doi.org/10.3390/nu13113834.

  22. H-J. Chen, C-M. Lin, C-Y. Lee, et al., Oncol. Rep., 30(2), 925 – 932 (2013); https://doi.org/10.3892/or.2013.2490.

    Article  CAS  Google Scholar 

  23. Y. Wang, M. Liu, S. Chen, and Q. Wu, Exp. Ther. Med., 19(2), 1065 – 1071 (2020); https://doi.org/10.3892/etm.2019.8303.

  24. A. Satari, S. Ghasemi, S. Habtemariam, et al., Evidence-Based Complement. and Altern. Medicine, Article ID 9913179 (2021); https://doi.org/10.1155/2021/9913179.

  25. T. Maher, R. Ahmad Raus, D. Daddiouaissa, et al., Molecules, 26(9), Article 2741 (2021); https://doi.org/10.3390/olecules26092741.

  26. P. Ausina, J. R. Branco, T. M. Demaria, et al., Sci. Rep., 10, Article 19617 (2020); https://doi.org/10.1038/s41598-020-76824-6.

  27. P. G. Anantharaju, B. D. Reddy, M. A. Padukudru, et al., Cancer Biol. Ther., 18(7) 492 – 504 (2017); https://doi.org/10.1080/15384047.2017.1324374.

  28. M. Abotaleb, A. Liskova, P. Kubatka, D. Büsselberg, Biomolecules, 10(2), 221 (2020); https://doi.org/10.3390/biom10020221.

  29. E. D. Sezer, L. M. Oktay, E. Karadada, et al., J. Med. Food, 22(11), 1118 – 1126 (2019); https://doi.org/10.1089/mf.2019.0098.

  30. N. J. Bouzaiene, S. K. Jaziri, H. Kovacic, et al., Eur. J. Pharmacol., 766, 99 – 105 (2015); https://doi.org/10.1016/.ejphar.2015.09.044.

  31. A. Moon, T. Agrawal, P. Gupta, et al., J. Pharm. Biol. Sci. (IOSR-JPBS), 12(3), 48 – 52 (2017); https://doi.org/10.9790/3008-1203064852.

  32. S. Huang, L.-L. Wang, N.-N. Xue, et al., Theranostics, 9(23), 6745 – 6763 (2019); https://doi.org/10.7150/thno.34674.

  33. A. Hazafa, M. O. Iqbal, U. Javaid, et al., Clin. Transl. Oncol., 24(3), 432 – 445 (2022); 10.1007 s12094-021-02709-3.

  34. L. Zhang, Q. Xie, and X. Li, Phytother. Res., 36(1), 279 – 298 (2022); https://doi.org/10.1002/ptr.7311.

    Article  CAS  Google Scholar 

  35. J. Zhao, G. Li, W. Bo, et al., Int. J. Oncol., 50(2), 613 – 621 (2017); https://doi.org/10.3892/ijo.2017.3843.

    Article  CAS  PubMed  Google Scholar 

  36. J. Xia, C. Xue, J. Yu, et al., Arch. Med. Sci., 17(1), 166 – 176 (2020); https://doi.org/10.5114/aoms.2020.100837.

  37. D. Kashyap, V. K. Garg, H. S. Tuli, et al., Biomolecules, 9(5), 174 (2019); https://doi.org/10.3390/biom9050174.

  38. M. Fantini, M. Benvenuto, L. Masuelli, et al., Int. J. Mol. Sci., 16(5), 9236 – 9282 (2015); https://doi.org/10.3390/jms16059236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. L. Oruganti, B. Meriga, Endocr. Metab. Immune Disord. Drug Target, 21(2), 246 – 252 (2021); https://doi.org/10.2174/1871530320666200807115647.

    Article  CAS  Google Scholar 

  40. E. V. Kalinina, L. A. Gavrilyuk, Biokhimiya, 85(8), 1051 – 1065 (2020).

    Google Scholar 

  41. S. M. Vostrikova, A. B. Grinev, V. G. Gogvadze, Biokhimiya, 85(10), 1474 – 1488 (2020).

    Google Scholar 

  42. N. Li, C. Sun, B. Zhou, et al., PLoS One, 9(7), Article e100314 (2014); https://doi.org/10.1371/journal.pone.0100314.

  43. D. Avtanski and L. Poretsky, Mol. Med., 24, Article 29 (2018); https://doi.org/10.1186/s10020-018-0032-7.

  44. J. M. Calderón-Montaño, E. Burgos-Morón, C. Pérez-Guerrero, et al., Mini Rev. Med. Chem., 11(4), 298 – 314 (2011).

    Article  PubMed  Google Scholar 

  45. C. Li, Y. Zhao, D. Yang, et al., Biochem. Cell Biol., 93(1), 16 – 27 (2015); https://doi.org/10.1139/bcb-2014 – 0067.

    Article  CAS  Google Scholar 

  46. J. Gong, S. Zhou, and S. Yang, Int. J. Mol. Sci., 20(3), Article 465 (2019); https://doi.org/10.3390/ijms20030465.

  47. M. G. Refolo, C. Lippolis, N. Carella, et al., Int. J. Mol. Sci., 19(5), Article 1518 (2018); 10.3390 ijms19051518.

  48. A. Kapinova, P. Stefanicka, P. Kubatka, et al., Biomed. Pharmacother., 96, 1465 – 1477 (2017); https://doi.org/10.1016/.biopha.2017.11.134.

  49. V. A. Kostyuk, Trudy Belorus. Gos. Univ, 11(2), 47 – 55 (2016).

    Google Scholar 

  50. Ya. F. Zverev, Obzory Klin. Farmakol. Lek. Ter., 15(2), 4 – 11 (2017); https://doi.org/10.17816/RCF1524-11.

  51. A. Vafadar, Z. Shabaninejad, A. Movahedpour, et al., Cell Biosci., 10, Article 32 (2020); https://doi.org/10.1186/s13578-20-00397-0.

  52. J. Maiuolo, M. Gliozzi, C. Carresi, et al., Nutrients, 13(11), Article 3834 (2021); https://doi.org/10.3390/nu13113834.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Shilova.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 57, No. 7, pp. 18 – 23, July, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosova, E.N., Shilova, I.V., Kiseleva, E.A. et al. Assessment of the Influences of Filipendula ulmaria Extracts Prepared by Two Methods on the Efficacy of Cytostatic Therapy. Pharm Chem J 57, 1029–1034 (2023). https://doi.org/10.1007/s11094-023-02980-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02980-4

Keywords

Navigation