Skip to main content
Log in

Dication Molecules as Tools for Studying Actylcholine and Glutamate Receptors (Review)

  • MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The review covers the pharmacochemical study of two receptor types, the neuronal nicotinate receptor and the glutamate receptor. The structure(activity relationship of dicationic blockers on the neuronal ion channel of the nicotinic acetylcholine receptor (nAChR) was studied to estimate the pore size in the cross section of the channel. A topographic model of the blocker binding site was proposed. It included two constrictions, a large one and a small one. The small constriction was located between the large one and the cytoplasmic end of the pore. The cross-sectional dimensions of the large and small constrictions that were estimated from the dimensions of the blockers were 6.1 × 8.3 Å and 5.5 × 6.4 Å, respectively; the spacing between the constrictions along the pore, ~7 Å. Acomparison of the topographic model with a molecular five-helix bundle model of the nAChR pore predicted that serine and threonine rings were the most probable candidates for the large and small constrictions, respectively. Replacement of aliphatic radicals on nitrogen atoms in dications by cyclic radicals led to the creation of a new class of compounds capable of blocking open ion channels of GluA1 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (Ca2+-permeable). It was found that N-methyl-D-aspartate (NMDA) receptor channels were blocked by both mono- and dicationic compounds while AMPA channels could be effectively blocked only by dicationic compounds of a certain length. The prospects for the use of combined (NMDA + AMPA) blockers as neuroprotective, anticancer, and antiviral agents were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. N. B. Brovtsyna, D. B. Tikhonov, O. B. Gorbunova, et al., J. Membr. Biol., 152, 77 – 87 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. N. Y. Lukomskaya and V. E. Gmiro, J. Auton. Nerv. Syst., 6, 363 – 371 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. D. B. Tikhonov, N. N. Potap’eva, V. E. Gmiro, et al., Biol. Membr., 13, 185 – 195 (1996).

  4. B. S. Zhorov, N. B. Brovtsyna, V. E. Gmiro, et al., J. Membr. Biol., 121, 119 – 132 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. S. M. Antonov, J. W. Johnson, N. Y. Lukomskaya, et al., Mol. Pharmacol., 47, 558 – 567 (1995).

    CAS  PubMed  Google Scholar 

  6. K. V. Bolshakov, D. B. Tikhonov, V. E. Gmiro, and L. G. Magazanik, Neurosci. Lett., 291, No. 2, 101 – 104 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. L. G. Magazanik, S. M. Antonov, N. Ya. Lukomskaya, et al., Fiziol. Zh. im. I. M. Sechenova, 80, 99 – 112 (1994).

    CAS  PubMed  Google Scholar 

  8. L. G. Magazanik, K. V. Bol’shakov, S. L. Buldakova, et al., Ross. Fiziol. Zh. im. I. M. Sechenova, 86, 1138 – 1151 (2000).

  9. M. V. Samoilova, E. V. Frolova, N. N. Potapjeva, et al., Invertebr. Neurosci., 3, 117 – 126 (1997).

    Article  CAS  Google Scholar 

  10. W. D. Paton and E. J. Zaimis, Br. J. Pharmacol. Chemother., 4(4), 381 – 400 (1949).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. N. V. Khromov-Borisov, V. E. Gmiro, and N. Ya. Lukomskaya, SU Pat. No. 757,520, Aug. 23, 1980; Byull. Izobret., 1980, No. 31.

  12. N. Ya. Lukomskaya and V. E. Gmiro, Dokl. Akad. Nauk SSSR, 265(3), 743 – 747 (1982).

    Google Scholar 

  13. V. I. Skok, A. A. Selyanko, V. A. Derkach, et al., Neurophysiology, 16(1), 46 – 52 (1984).

    Article  Google Scholar 

  14. S. Kertser, A. Bobryshev, S. Voitenko, et al., J. Membr. Biol., 163(2), 111 – 118 (1998).

    Article  CAS  Google Scholar 

  15. V. E. Gmiro, N. B. Brovtsyna, S. E. Serdyuk, and N. Ya. Lukomskaya, Bioorg. Khim., 28(2), 135 – 146 (2002).

    CAS  Google Scholar 

  16. B. S. Zhorov, N. B. Brovtsyna, V. E. Gmiro, et al., Biol. Membr., 6(10), 1069 – 1084 (1989).

    CAS  Google Scholar 

  17. N. B. Brovtsyna, V. E. Gmiro, O. B. Gorbunova, et al., Biol. Membr., 13(1), 57 – 70 (1996).

    CAS  Google Scholar 

  18. D. E. Kurennyi, V. A. Derkach, V. E. Gmiro, and V. I. Skok, Neirofiziologiya, 20, 826 – 829 (1988).

    CAS  Google Scholar 

  19. V. E. Gmiro, N. B. Brovtsyna, O. B. Gorbunova, et al., Dokl. Ross. Akad. Nauk, 341, 699 – 705 (1995).

    CAS  Google Scholar 

  20. V. E. Gmiro, S. D. Groisman, N. Ya. Kukomskaya, et al., Dokl. Akad. Nauk SSSR, 292(2), 497 – 501 (1987).

    CAS  PubMed  Google Scholar 

  21. I. N. Remizov, V. Yu. Maslov, E. E. Purnyn?, et al., Neirofiziologiya, 27(5/6), 323 – 330 (1995).

  22. D. E. Kurenny, A. A. Selyanko, V. A. Derkach, et al., J. Auton. Nerv. Syst., 48, 231 – 240 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. V. I. Skok, S. D. Groisman, L. V. Melnitchenko, et al., J. Auton. Nerv. Syst., 35, 211 – 217 (1991).

    Article  CAS  PubMed  Google Scholar 

  24. V. E. Gmiro, L. N. Gavrovskaya, E. N. Kharchevnikova, et al., RU Pat. No. 2,014,074, Jun. 15, 1994; Byull., No. 11.

  25. V. E. Gmiro, P. D. Shabanov, and S. E. Serdyuk, RU Pat. No. 2,597,616, Sept. 10, 2016; Byull., No. 25.

  26. L. V. Mel?nichenko, V. V. Gerzanich, V. E. Gmiro, and V. I. Skok, Fiziol. Zh. SSSR im. I. M. Sechenova, 75(3), 318 – 326 (1989).

  27. L. G. Magazanik, S. M. Antonov, and V. E. Gmiro, Biol. Membr., 1(2), 130 – 140 (1984).

    CAS  Google Scholar 

  28. L. G. Magazanik, S. L. Buldakova, M. V. Samoilova, et al., J. Physiol., 505(3), 655 – 663 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. E. Serdyuk and V. E. Gmiro, Byull. Eksp. Biol. Med., 143(5), 548 – 550 (2007).

    Article  Google Scholar 

  30. V. E. Gmiro, S. E. Serdyuk, and O. M. Efremov, Byull. Eksp. Biol. Med., 146(7), 22 – 25 (2008).

    Google Scholar 

  31. L. G. Magazanik, S. M. Antonov, N. Ya. Lukomskaya, et al., Fiziol. Zh. im. I. M. Sechenov, 80(7), 99 – 111 (1994).

    CAS  Google Scholar 

  32. V. E. Gmiro and S. E. Serdyuk, Khim.-farm. Zh., 53(3), 21 – 25 (2019); Pharm. Chem. J., 53(3), 212 – 215 (2019).

  33. V. I. Skok, S. D. Groisman, L. V. Melnitchenko, et al., J. Auton. Nerv. Syst., 35(3), 211 – 217 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. V. N. Serebryakov, R. Shubert, V. E. Gmiro, and P. D. Brezhestovskii, Biol. Membr., 8(9), 959 – 965 (1991).

    CAS  Google Scholar 

  35. V. V. Shipachev, A. A. Timoshin, V. E. Gmiro, et al., Biol. Membr., 14(3), 262 – 269 (1997).

    Google Scholar 

  36. V. E. Gmiro and S. E. Serdyuk, Ross. Zh. Fiziol. Im. I. M. Sechenova, 103(10), 1106 – 1113 (2017).

  37. I. N. Abdurasulova, A. V. Matsulevich, S. E. Serdyuk, and V. E. Gmiro, J. Mult. Scler. (Foster City), 5(1), 217 (2018).

    Google Scholar 

  38. S. A. Upton, Nat. Rev. Drug Discovery, 5, No. 2, 160 – 170 (2006).

    Article  Google Scholar 

  39. R. Dingledine, K. Barges, D. Bowie, and S. F. Traynelis, Pharmacol. Rev., 51, 8 – 61 (1999).

    Google Scholar 

  40. N. Burnashev, Z. Zhou, E. Neher, and B. Sakmann, J. Physiol. (London, U. K.). 485, 403 – 418 (1995).

  41. G. T. Swanson, S. K. Kamboj, and S. J. Cull-Candy, J. Neurosci., 17, 58 – 69 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. L. G. Magazanik, M. V. Samoilova, S. L. Buldakova, et al., Ross. Fiziol. Zh. im. I. M. Sechenova, 83, 19 – 29 (1997).

  43. D. B. Tikhonov, M. V. Samoilova, S. L. Buldakova, et al., Br. J. Pharmacol., 129, 265 – 274 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. E. A. Cavalheiro and J. W. Olney, Proc. Natl. Acad. Sci. USA, 98, 5947 – 5948 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. H. S. Chen and S. A. Lipton, J. Neurochem., 97, 1611 – 1626 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. A. Yoshioka, N. Ikegaki, M. Williams, and D. Pleasure, J. Neurosci. Res., 46, 164 – 172 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. E. Aronica, B. Yankaya, and G. H. Jansen, Neuropathol. Appl. Neurobiol., 27, 223 – 237 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. S. Ishiuchi, K. Tsuzuki, Y. Yoshida, et al., Nat. Med., 8, 971 – 978 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. S. A. Lyons,W. J. Chung, A. K. Weaver, et al., Cancer Res., 67, 9463 – 9471 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S. Ishiuchi, Y. Yoshida, K. Sugawara, et al., J. Neurosci., 27, 7987 – 8001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. H. Hu, N. Takano, L. Xiang, et al., Oncotarget, 5, 8853 – 8868 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. W. Rzeski, L. Turski, and C. Ikonomidou, Proc. Natl. Acad. Sci. USA, 98(11), 6372 – 6377 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Stepulak, M. Sifringer, W. Rzeski, et al., Proc. Natl. Acad. Sci. USA, 102, 15605 – 15610 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. A. Stepulak, H. Luksch, and O. Uckermann, Anticancer Res., 31, 565 – 573 (2011).

    CAS  PubMed  Google Scholar 

  55. W. G. North, G. Gao, V. A. Memoli, et al., Breast Cancer Res. Treat., 122, 307 – 314 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. F. Yamaguchi, Y. Hirata, H. Akram, et al., BMC Cancer, 13, 468 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. M. Abdul and N. J. Hoosein, J. Membr. Biol., 205, 125 – 128 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Z. Song, C. D. He, J. Liu, et al., Exp. Dermatol., 21, 926 – 931 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. W. G. North, G. Gao, A. Jensen, et al., Clin. Pharmacol., 2, 31 – 40 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. V. Venkataramani, D. I. Tanev, C. Strahle, et al., Nature, 573(7775), 532 – 538 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. M. Roslin, R. Henriksson, P. Bergstrom, et al., J. Neurooncol., 61(2), 151 – 160 (2003).

    Article  PubMed  Google Scholar 

  62. T. Hanada, Y. Hashizume, N. Tokuhara, et al., Epilepsia, 52(7), 1331 – 1340 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. V. E. Gmiro, S. E. Serdyuk, and O. S. Veselkina, Byull. Eksp. Biol. Med., 160(7), 80 – 83 (2015).

    Google Scholar 

  64. V. E. Gmiro, S. E. Serdyuk, and O. S. Veselkina, Khim.-farm. Zh., 52(10), 13 – 17 (2018); Pharm. Chem. J., 52(10), 830 – 834 (2019).

  65. V. E. Gmiro, S. E. Serdyuk, and O. S. Veselkina, Ross. Fiziol. Zh. im. I. M. Sechenova, 103(6), 645 – 657 (2017).

  66. B. S. Meldrum and M. A. Rogawski, Neurotherapeutics, 4(1), 18 – 61 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. V. E. Gmiro, S. E. Serdyuk, and O. S. Veselkina, Khim.-farm. Zh., 53(1), 30 – 35 (2019); Pharm. Chem. J., 53(1), 29 – 34 (2019).

  68. S. E. Serdyuk and V. E. Gmiro, Ross. Fiziol. Zh. im. I. M. Sechenova, 99(12), 1361 – 1365 (2013).

  69. O. Kopach, V. Krotov, J. Goncharenko, and N. Voitenko, Front. Cell. Neurosci., 10, 50 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. S. E. Serdyuk, V. E. Gmiro, and O. S. Veselkina, Byull. Eksp. Biol. Med., 157(1), 19 – 22 (2014).

    Article  Google Scholar 

  71. V. E. Gmiro, S. E. Serdyuk, and O. S. Veselkina, Ross. Fiziol. Zh. im. I. M. Sechenova, 103(3), 299 – 306 (2017).

  72. I. N. Abdurasulova, S. E. Serdyuk, and V. E. Gmiro, Neiroimmunologiya, 5(1), 4 – 11 (2007).

    Google Scholar 

  73. J. L. Nargi-Aizenman, M. B. Havert, M. Zhang, et al., Ann. Neurol., 55(4), 541 – 549 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. O. Bar-Peled, R. O’Brien, J. Morrison, et al., NeuroReport, 10, 855 – 859 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. T. Williams, N. Day, P. Ince, et al., Ann. Neurol., 42, 200 – 207 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. V. Siddharthan, H. Wang, A. L. de Oliveira, et al., Antiviral Chem. Chemother., 28, 2040206620950143 (2020).

    Article  CAS  Google Scholar 

  77. S. Hasanagic and F. Serdarevic, Eur. Respir. J., 56(2), 2001610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. A. Cortes-Borra and G. E. Aranda-Abreu, Pharmacol. Reports., 73, 962 – 965 (2021).

    Article  CAS  Google Scholar 

  79. D. B. Tikhonov and L. G. Magazanik, Ross. Fiziol. Zh. im. I. M. Sechenova, 96(7), 726 – 739 (2010).

  80. K. V. Bolshakov, K. H. Kim, N. N. Potapjeva, et al., Neuropharmacology, 49(2), 144 – 155 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Gmiro.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 57, No. 6, pp. 3 – 17, June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gmiro, V.E. Dication Molecules as Tools for Studying Actylcholine and Glutamate Receptors (Review). Pharm Chem J 57, 763–776 (2023). https://doi.org/10.1007/s11094-023-02951-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02951-9

Keywords

Navigation