Skip to main content

Advertisement

Log in

Determination of N-Acetylcysteine in Pure and Drug Formulations Using Inhibitory Kinetic Approach

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A simple, reproducible, and swift inhibitory kinetic approach for the N-acetylcysteine (NAC) determination has been developed and linked to NAC quantification in drug formulations. The method is based on the inhibitory feature of N-acetylcysteine. NAC forms a stable complex with Hg2+ and reduces the actual Hg2+ concentration and ultimately the rate of reaction between N-R-salt and [Ru(CN)6]4- catalyzed by Hg2+. Under the optimized experimental conditions with Temp = 45.0 ± 0.1°C, I = 0.05 mole dm-3 (KNO3), [N-R-salt] = 5.5 × 10-4 mole dm-3 [Hg+2] = 8.0 × 10-5 mole dm-3, pH = 6.0 ± 0.02, and [Ru(CN)64-] = 5.25× 10-5 mole dm-3, fixed time of 7 and 12 min was selected to compute the absorbance at 525 nm corresponding to the ultimate reaction product [Ru(CN)5 N-R-salt]3-. The inhibitory action of NAC toward cyanide imitation from [Ru(CN)6]4- by N-R-salt, catalyzed by Hg2+, has been demonstrated using a redesigned mechanistic scheme. With the proposed kinetic spectrophotometric method the micro-level quantification of NAC in distinct water samples can be done down to 1.25 × 10-6 mole dm-3. The developed procedure is highly reproducible and can be efficiently used to quantitatively estimate the NAC in the drug samples with high accuracy. The general additives present in drugs do not substantially interfere in the determination of NAC even up to 1000 times with [NAC].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. W. S. Waring, Ther. Adv. Drug Saf., 3(6), 305 – 315 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. R. S. Hoffman, Clin. Med., 20, 100314 (2020).

    Google Scholar 

  3. D. N. Bateman and J. W. Dear, Toxicol. Res., 8(4), 489 – 498 (2019).

    Article  CAS  Google Scholar 

  4. A. M. Sadowska, J. Verbraecken, K. Darquennes, and W. A. De Backer, Int. J. Chron. Obstruct. Pulmon. Dis., 1(4), 425 – 434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Šalamon, B. Kramar, T. P. Marolt, et al., Antioxidants, 8(5), 111 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. G. Tardiolo, P. Bramanti and E. Mazzon, Molecules, 23, 3305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. B. M. Craver, G. Ramanathan, S. Hoang, et al., Blood Adv., 4(2), 312 – 321 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. K. Tang, Front. Mar. Sci., 7, 68 (2020).

    Article  Google Scholar 

  9. C. Abadie and G. Tcherkez, Commun. Biol., 2, 379 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. G. K. Kolluru, X. Shen and C. G. Kevil, Arterioscler. Thromb. Vasc. Biol., 40, 874 – 884 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. J. M. Fukuto, L. J. Ignarro, P. Nagy, et al., FEBS Lett., 592, 2140 – 2152 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. O. Omondi, O. Stephen, S. O. Ojwach, and D. Jaganyi, Inorg. Chim. Acta, 512, 119883 (2020).

    Article  CAS  Google Scholar 

  13. R. M. Naik, A. Srivastava and A. Asthana, J. Iran. Chem. Soc., 5, 29 – 36 (2008).

    Article  CAS  Google Scholar 

  14. T. Iioka, S. Takahashi, Y. Yoshida, et al., J. Comput. Chem., 40, 279 – 285 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. R. M. Naik, A. Srivastava, A. K. Verma, et al., S. Bioinorg. Reac. Mech., 6, 185 – 192 (2007).

    CAS  Google Scholar 

  16. A. Srivastava, V. Sharma, A. Prajapati, et al., Chem. Chem. Technol., 13(3), 275 – 279 (2019).

    Article  CAS  Google Scholar 

  17. S. Prasad, R. M. Naik and A. Srivastava, Spectrochim. Acta. A, 7, 958 – 965 (2008).

    Article  Google Scholar 

  18. R. Rastogi, A. Srivastava and R. M. Naik, J. Disp. Sc. Tech., 41(7), 1045 – 1050 (2020).

    Article  CAS  Google Scholar 

  19. A. Srivastava, R. M. Naik and R. Rastogi, J. Iran. Chem. Soc., 17(9), 2327 – 2333 (2020).

    Article  Google Scholar 

  20. Y. Huang, T. Lin, L. Hou, et al., Microchem. J., 144, 190 – 194 (2019).

    Article  CAS  Google Scholar 

  21. A. G. Dedov, D. Y. Marchenko and L. V. Zrelova, Pet. Chem., 58, 714 – 720 (2018).

    Article  CAS  Google Scholar 

  22. A. Kostara, G. Z. Tsogas, A. G. Vlessidis, and D. L. Giokas, ACS Omega, 3(12), 16831 – 16838 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A. Raab and J. Feldmann, Anal. Chim. Acta, 1079, 20 – 29 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. S. Zhand and J. Q. Jiang, Biointerface Res. Appl. Chem., 9, 4433 – 4438 (2019).

    Article  Google Scholar 

  25. L. Ni, X. Geng, S. Li, et al., Talanta, 207, 120283 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. J. Nelson, J. Assoc. Offic. Anal. Chem., 64, 1174 – 1178 (1981).

    CAS  Google Scholar 

  27. Q. Chao, H. Sheng, X. Cheng, and T. Ren, Anal. Sci., 21, 721 – 724 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. S. Shoba, O. M. Bankole and A. S. Ogunlaja, Anal. Methods, 12, 1094 – 1106 (2020).

    Article  CAS  Google Scholar 

  29. I. Nugrahani, I. M. Abotbina, C. N. Apsari, et al., Biointerface Res. Appl. Chem., 10(1), 4780 – 4785 (2019).

    Article  Google Scholar 

  30. T. Perez-Ruiz, C. Martinez- Lozano, V. Tomas, and C. Sidrachde- Cardona, J. Pharm. Biomed. Anal., 15, 33 – 38 (1996).

  31. G. Feng, S. Sun, M. Wang, et al., J. Water Supply Res. T, 67(5), 498 – 505 (2018).

    Article  Google Scholar 

  32. U. Dzieko, N. Kubczak, K. P. Przybylska, et al., Molecules, 25, 1232 (2020).

    Article  Google Scholar 

  33. L. Cao, T. Wei, Y. Shi, et al., J. Liq. Chrom. Relat. Tech., 41(2), 58 – 65 (2019).

    Article  Google Scholar 

  34. A. Srivastava, Biointerface Res. Appl. Chem., 10(6), 7152 – 7161 (2020).

    Article  CAS  Google Scholar 

  35. A. Agarwal, S. Prasad and R. M. Naik, Microchem. J., 128, 181 – 186 (2016).

    Article  CAS  Google Scholar 

  36. A. Srivastava, Biointerface Res. Appl. Chem., 11(3), 10654 – 10663 (2021).

    CAS  Google Scholar 

  37. F. Athar, K. Husain, M. Abid, and A. Azam, Chem. Biodiversity, 2, 1320 – 1330 (2005).

    Article  CAS  Google Scholar 

  38. C. M. Bastos, K. A. Gordon and T. D. Ocain, Bioorg. Med. Chem. Lett., 8, 147 – 150 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. B. Yu, T. W. Rees, J. Liang, et al., Dalton Trans., 48, 3914 – 3921 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. F. A. Gomes-Junior, R. S. Silva, R. G. Lima, and M. A. Vannier-Santos, FEMS Microbio. Lett., 364(9) (2017).

  41. R. G. Kenny and C. J. Marmion, Chem. Rev., 119, 1058 – 1137 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. L. Gua, X. Lia, Q. Ran, et al., Cancer Med., 5, 2850 – 2860 (2016).

    Article  Google Scholar 

  43. K. Lin, Z. Z. Zhao, H. B. Bo, et al., Pharmacol., 9, 1323 (2018).

    CAS  Google Scholar 

  44. J. P. C. Coverdale, T. L. M. Carron and I. R. Canelon, Inorganics, 7, 31 (2019).

    Article  CAS  Google Scholar 

  45. R. M. Naik, A. Agarwal, A. K. Verma, et al., Int. J. Chem. Kinet., 41, 215 – 226 (2009).

    Article  CAS  Google Scholar 

  46. A. Srivastava, V. Sharma, V. K. Singh, and K. Srivastava, J. Mex. Chem. Soc., 66, 57 – 69 (2022).

    CAS  Google Scholar 

  47. A. Srivastava, Biointerface Res. Appl. Chem., 11(4), 11404 – 11417 (2021).

    CAS  Google Scholar 

  48. British Pharmacopoeia (1995 Ed.), British Pharmacopoeia Commission (London).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Srivastava.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Srivastava, N., Srivastava, A. et al. Determination of N-Acetylcysteine in Pure and Drug Formulations Using Inhibitory Kinetic Approach. Pharm Chem J 57, 756–762 (2023). https://doi.org/10.1007/s11094-023-02949-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02949-3

Keywords

Navigation