Skip to main content

Advertisement

Log in

Investigation into Anti-Alzheimer Activity of Newly Developed Phthalimide Derivatives in Experimental Animals

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The present study was designed to investigate anti-Alzheimer’s activity and to quantify brain neurotransmitter of newly developed isoindoline-1,3-dione derivatives (IDDs). The anti-Alzheimer’s activity was evaluated using the elevated plus maze (EPM) and Morris water maze (MWZ) tests. Rats were divided into five groups, each containing six animals, which were treated with vehicle, scopolamine, donepezil and newly developed phthalimide derivatives (IDDs). Each model was studied for 5 days and the in-vivo anti-oxidant activity indices of brain including catalase, lipid peroxidase (LPO), glutathione (GSH) and acetylcholinesterase (AChE) levels were estimated spectrophotometrically. The levels of neurotransmitters serotonin and dopamine were estimated in rat brain homogenate using HPLC method. Treatment with high dose (30 mg/kg) of IDD showed significant anti-Alzheimer’s activity in EPM and MWM tests in a dose-dependent manner in comparison with standard drug donepezil (4 mg/kg). In estimating the biochemical parameters, the level of catalase in the test group increased significantly, whereas LPO and GSH levels in treated groups decreased as compared to the untreated disease control group. The HPLC method confirmed that the concentrations of biogenic amines like dopamine and serotonin were significantly increased in phthalilmide group as compared to the control group. Thus, the present study reveals that the newly developed IDDs exhibit anti-Alzheimer’s activity in various experimental animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  1. A. Kumar, A. Singh, and Ekavali, Pharmacol. Rep., 67(2), 195 – 203 (2015).

  2. M. S. Parihar and Taruna Hemnani, J. Clin. Neurosci., 11(5), 456 – 467 (2004).

  3. P. T. Francis, A. M. Palmer, M. Snape, and G. K. Wilcock, J. Neuron. Neurosurg. Psychiatry, 66, 137 – 147 (1999).

    Article  CAS  Google Scholar 

  4. A. Gella, N. Durany, Cell Adhesion Migration, 3(1), 88 – 93 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. L. F. Nunes Lemes, G. de Andrade Ramos, A. S. de Oliveira, et al., Eur. J. Med. Chem., 108, 687 – 700 (2016).

  6. A. Burns, M. Rossor, et al., Dement. Geriatr. Cogn. Disord., 10, 237 – 244 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. N. Guzior, M. Bajda, M. Skrok, et al., Eur. J. Med. Chem., 92, 21 – 47 (2015).

    Article  Google Scholar 

  8. www.webmd.com [Alzheimer’s disease guide].

  9. alz.org®|alzheimer’s association

  10. I. Melnikova, Nature Rev. Drug Discov., 6, 341 – 342 (2015).

    Article  Google Scholar 

  11. M. N. Sabbagh, S. Richardson, and N. Relkin, Alzheimers Dementia, 4(Supply 1), S109–S118 (2008).

  12. P. Rocca, E. Cocuzza, L. Marchiaro, and F. Bogetto, Progr. Neuro-Psychopharmacol. & Biol. Psychiatry, 26, 369– 373 (2002).

    CAS  Google Scholar 

  13. N. Guzior and M. Bajda, Eur. J. Med. Chem., 92, 738 – 743 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. W. Si, T. Zhang, L. Zhang, et al., Bioorg. Med. Chem., 26(9), 2380 (2016).

    Article  CAS  Google Scholar 

  15. M. Ignasik, M. Bajda, N. Guzior, et al., Arch. Pharm. Chem. Life Sci., 345, 509 – 516 (2012).

    Article  CAS  Google Scholar 

  16. D. Panek, A.Wiêckowska, T.Wichur, et al., Eur. J. Med. Chem., 125, 676 – 695 (2017).

  17. M. Bajda, A.Wiêckowska, M. Hebda, et al., Int. J. Mol. Sci., 14, 5608 – 5632 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Hebda, M. Bajda, A. Wiêckowska, et al., Molecules, 21(4), 410 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. D. Alonso, I. Dorronsoro, L. Rubio, et al., Bioorg. Med. Chem., 13, 6588 – 6597 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. A. Aliabadi and F. Alireza, Iran J. Basic Med. Sci., 16, 10 (2013).

    Google Scholar 

  21. S. Azimi, A. Zonouzi, O. Firuzi, et al., Eur. J. Med. Chem., 138, 729 – 737 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. O. Grundmann, J. I. Nkajima, S. Seo, and V. Butterweck, J. Ethnopharmacol., 110, 406 – 411 (2007).

    Article  PubMed  Google Scholar 

  23. J. Itoh, T. Nabeshima, and T. Kameyama, Psychopharmacol., 101, 27 – 33 (1990).

    Article  CAS  Google Scholar 

  24. Z. Hlinak and I. Krejc, Behav. Brain Res., 91, 83 – 89 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. D. Dhingra and V. Kumar, Adv. Pharmacol. Sci., 2012, 357 – 368 (2012).

    Google Scholar 

  26. R. K. McNamara and R. W. Skelton, Brain Res. Rev., 18, 33 – 49 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. R. D. Hooge and P. P. De Deyn, Brain Res. Rev., 36, 60 – 90 (2001).

    Article  PubMed  Google Scholar 

  28. M. C. Carrillo, C. Minami, K. Kitani, et al., Life Sci., 67, 577 – 585 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. A. Bhattacharya, S. Ghosal, and S. K. Bhattacharya, J. Ethnopharmacol., 74, 1 – 6 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. F. Liu and T. B. Ng, Biochem. Cell Biol., 78, 447 – 453 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. T. Matsunami, Y. Sato, T. Sato, and M. Yukawa, Physiol. Res., 59, 97 – 104 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. A. Nurrochmad, A. R. Hakim, S. A. Marogono, et al., Int. J. Pharm. Pharm. Sci., 2(3), 45 – 48 (2010).

    CAS  Google Scholar 

  33. M. Schlumpf, W. Lichtensteiger, H. Langemann, et al., Biochem. Pharmacol., 23, 2337 – 2446 (1974).

    Article  Google Scholar 

  34. A. Mohammadi-Farani, N. Abdi, A. Moradi, and A. Aliabadi, Iran J. Basic Med. Sci., 20, 59 – 66 (2017).

    Google Scholar 

  35. https://www.drugbank.ca/drugs/DB00843.

  36. http://lmmd.ecust.edu.cn/admetsar1/predict/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaishnavi Chandrakant Patel.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V.C., Samresh, P.R., Dipayan, T. et al. Investigation into Anti-Alzheimer Activity of Newly Developed Phthalimide Derivatives in Experimental Animals. Pharm Chem J 57, 60–69 (2023). https://doi.org/10.1007/s11094-023-02851-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-02851-y

Keywords

Navigation