Skip to main content
Log in

New Potentiometric Sensor for Determination of Metformin

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A potentiometric metformin-sensitive detector with a plasticized polyvinyl chloride membrane has been developed. The sensor contains an ion associate of metformin with bromophenol blue dye. The response is linear within the range of metformin ion concentrations 1 × 10–-4–1 × 10–-1 M. The slope of the electrode function is characteristic of a singly charged cation. The limit of detection is 8 × 10–-5 M. The sensor can be used for detecting and determining metformin in medicines (RSD = 0.59 – 2.52%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. M. Garcia-Saenz, M. Lobaton-Ginsberg, and A. Ferreira-Hermosillo, Biomolecules, 12(4), 574 (2022); https://doi.org/10.3390/biom12040574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Mondal, R. N. Samajdar, S. Mukherjee, et al., J. Phys. Chem. B, 122(8), 2227 – 2242 (2018); https://doi.org/10.1021/acs.jpcb.7b11928.

    Article  PubMed  Google Scholar 

  3. Diabetes Prev. Prog. Res. Group, N. Engl. J. Med., 346(6), 393 – 403 (2002); https://jdc.jefferson.edu/medfp/322.

    Google Scholar 

  4. J. H. DeVries, S. C. Bain, H. W. Rodbard, et al., Diabetes Care, 35, 1446 – 1454 (2012); https://doi.org/10.2337/dc11-1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. M. M. Evans, L. A. Donnelly, A. M. Emslie-Smith, et al., BMJ, 330, 1304 – 1305 (2005); https://doi.org/10.1136/bmj.38415.708634.F7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. G. Zhou, R. Myers, Y. Li, et al., J. Clin. Invest., 108, 1167 (2001); https://doi.org/10.1172/JCI13505.

  7. T. Akinyeke, S. Matsumura, X. Wang, et al., Carcinogenesis, 34, 2823 – 2832 (2013); https://doi.org/10.1093/carcin/bgt307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. E. Lonardo, M. Cioffi, P. Sancho, et al., PLoS One, 8, e76518 (2013); https://doi.org/10.1371/journal.pone.0076518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. J. Shank, K. Yang, J. Ghannam, et al., Gynecol. Oncol., 127(2), 390 – 397 (2012); https://doi.org/10.1016/j.ygyno.2012.07.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. Garcia and G. Tisman, J. Clin. Oncol., 28(2), e19 (2009); https://doi.org/10.1200/JCO.2009.25.7857.

    Article  CAS  PubMed  Google Scholar 

  11. D. Iliopoulos, H. A. Hirsch, and K. Struhl, Cancer Res., 71(9), 3196 – 3201 (2011); https://doi.org/10.1158/0008-5472.CAN-10-3471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S. Jiralerspong, S. L. Palla, S. H. Giordano, et al., J. Clin. Oncol., 27(20), 3297 – 3302 (2009); https://doi.org/10.1200/JCO.2009.19.6410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. V. Perumalsamy, H. D. Kumar, and S. Suresh, Biointerface Res. Appl. Chem., 13(2), 101 (2023); https://doi.org/10.33263/BRIAC132.101.

    Article  CAS  Google Scholar 

  14. J. A. Hirst, A. J. Farmer, R. Ali, et al., Diabetes Care, 35(2), 446 – 454 (2012); https://doi.org/10.2337/dc11-1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M. Scheurer, F. Sacher, and H.-J. Brauch, J. Environ. Monit., 11(9), 1608 – 1613 (2009); https://doi.org/10.1039/b909311g.

    Article  CAS  PubMed  Google Scholar 

  16. C. V. Rao, Biguanides, in: Encyclopedia of Toxicology, Third Ed., Elsevier (2014), pp. 452 – 455; https://www.elsevier.com/books/encyclopedia-of-toxicology/wexler/978-0-12-386454-3.

  17. P. Saxena, A. S. Raghuwanshi, U. K. Jain, et al., Orient. J. Chem., 26(5), 1553 – 1556 (2010); http://www.orientjchem.org/?p=24645.

    CAS  Google Scholar 

  18. B. Hernandez, F. Pfluger, S. G. Kruglik, et al., J. Pharm. Biomed. Anal., 114, 42 – 48 (2015); https://doi.org/10.1016/j.jpba.2015.04.041.

    Article  CAS  PubMed  Google Scholar 

  19. Zh. Kormosh and T. Savchuk, Pharm. Chem. J., 50(8), 556 – 557 (2016); https://doi.org/10.1007/s11094-016-1489-8.

    Article  CAS  Google Scholar 

  20. N. Zubenia, Z. Kormosh, D. Semenyshyn, et al., Anal. Bioanal. Electrochem., 8, No. 4, 466 – 477 (2016); http://abechem.ir/No.%204-2016/2016,%208(4),%20466-477.pdf

    CAS  Google Scholar 

  21. N. Zubenia, Z. Kormosh, D. Saribekova, et al., Mediterr. J. Chem., 6(2), 7 – 14 (2016); https://doi.org/10.13171/mjc61/016111516/kormosh.

    Article  CAS  Google Scholar 

  22. Zh. A. Kormosh, T. I. Savchuk, Ya. R. Bazel, et al., Anal. Bioanal. Electrochem., 6(3), 367 – 378 (2014); http://abechem.ir/No.%203-2014/2014,63,367-378.pdf

  23. I. Antal, Z. Kormosh, Y. Bazel, et al., Electroanalysis, 22(22), 2714 – 2719 (2010); https://doi.org/10.1002/elan.201000124

    Article  CAS  Google Scholar 

  24. N. Zubenia, Zh. Kormosh, D. Semenyshyn, et al., Anal. Bioanal. Electrochem., 10, No. 5, 531 – 540 (2018); http://abechem.ir/No.%205-2018/2018,%2010(5),%20531-540.pdf

    CAS  Google Scholar 

  25. Z. A. Kormosh, N. A. Markovska, and N. N. Kormosh, Pharm. Chem. J., 53, 577 – 579 (2019); https://doi.org/10.1007/s11094-019-02040-w

    Article  CAS  Google Scholar 

  26. Zh. Kormosh, N. Kormosh, Yu. Bokhan, et al., Pharm. Chem. J., 55(1), 97 – 99 (2021); https://doi.org/10.1007/s11094-021-02379-z.

    Article  CAS  Google Scholar 

  27. Z. Kormosh, N. Kormosh, Y. Bokhan, et al., Anal. Bioanal. Electrochem., 14(1), 32 – 44 (2022); http://www.abechem.com/article249321.html.

    CAS  Google Scholar 

  28. Zh. Kormosh, O. Matskiv, N. Kormosh, et al., Pharm. Chem. J., 55(12), 1412 – 1415 (2022); https://doi.org/10.1007/s11094-022-02590-6.

    Article  CAS  Google Scholar 

  29. E. Khaled and M. S. Kamel, Sensing in Electroanalysis, K. Kalcher, R. Metelka, I. Svancara, and K. Vytas (eds.), University Press Centre, Pardubice (2011), pp. 323 – 335; https://dk.upce.cz/bitstream/handle/10195/42526/KhaledECyclodextrin-Based2011.pdf?sequence=1.

  30. K. Elmorsy, H. Hassan, K. Manal, et al., Curr. Pharm. Anal., 3(4), 262 – 267 (2007); https://doi.org/10.2174/157341207782418776.

    Article  Google Scholar 

  31. E. Khaled, M. S. Kamel, H. N. Hassan, et al., Analyst, 137(23), 5680 – 5687 (2012); https://doi.org/10.1039/C2AN35696A.

    Article  CAS  PubMed  Google Scholar 

  32. A. V. Komolkin, A. Laaksonen, and A. Maliniak, J. Chem. Phys., 101(5), 4103 – 4116 (1994); https://doi.org/10.1063/1.467460.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. Kormosh.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 56, No. 8, pp. 59 – 62, August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kormosh, Z., Kormosh, N., Golub, S. et al. New Potentiometric Sensor for Determination of Metformin. Pharm Chem J 56, 1140–1143 (2022). https://doi.org/10.1007/s11094-022-02765-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02765-1

Keywords

Navigation