Skip to main content

Advertisement

Log in

Antioxidant Action of Hesperis matronalis L. in Chronic Experimental Diabetes

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Hesperis matronalis L. is an herbaceous species used in traditional medicine for stimulatory, antiscorbutic, diuretic, diaphoretic and expectorant properties. The antioxidant effect of a 20% hydroalcoholic extract from the flowering aerial part of H. matronalis (HMHE) was evaluated in mice with chronic experimental streptozotocin-induced diabetes (STZ-ID). Four groups of mice included one control group treated with saline and three test groups with STZ-ID. The second group remained with untreated diabetes and was evaluated for 35 days. The third and fourth groups were treated daily for 35 days with 20% hydroalcoholic extract from the leaves of Vaccinium myrtillus (VMHE, positive control group) and HMHE (experimental group), respectively. At the end of experiment, the levels of some oxidative stress markers were determined in blood samples, including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and the total antioxidant capacity (TAC) was assessed. In addition to the hypoglycemic action, HMHE exhibited a decrease in the MDApro-oxidant activity and increase in the antioxidant activity of SOD, GPx and TAC. The anti-oxidative stress effect was correlated with decreased blood sugar in chronic STZ-ID mice. Based on these results, HMHE can be recommended as a source of natural polyphenols with adjunctive role in the prophylaxis and treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. O. M. Ighodaro, Biomed. Pharmacother., 108, 656 – 662 (2018).

    CAS  PubMed  Google Scholar 

  2. P. Newsholme, V. F. Cruzat, K. N. Keane, et al., Biochem. J., 473, 4527 – 4550 (2016).

    CAS  PubMed  Google Scholar 

  3. H. Yaribeygi, T. Sathyapalan, S. L. Atkin, and A. Sahebkar, Oxid. Med. Cell. Longev., 2020, 8609213 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. V. R. Pasupuleti, C. S. Arigela, S. H. Gan, et al., Oxid. Med. Cell. Longev., 2020, 8878172 (2020).

    PubMed  PubMed Central  Google Scholar 

  5. V. Saio, D. Syiem, and R. Sharma, J. Basic Clin. Pharm., 3, 249 – 254 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. P. Newsholme, K. N. Keane, R. Carlessi, and V. Cruzat, Am. J. Physiol. Cell Physiol., 317, C420 – C433 (2019).

    CAS  PubMed  Google Scholar 

  7. U. Asmat, K. Abad, and K. Ismail, Saudi Pharm. J., 24, 547 – 553 (2016).

    PubMed  Google Scholar 

  8. H. Yang, X. Jin, C. W. Kei Lam, and S. K. Yan, Clin. Chem. Lab. Med., 49, 1773 – 1782 (2011).

    CAS  PubMed  Google Scholar 

  9. P. Malko and L. H. Jiang, Redox Biol., 37, 101755 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. A. C. Maritim, R. A. Sanders, and J. B. Watkins, J. Biochem. Mol. Toxicol., 17, 24 – 38 (2003).

    CAS  PubMed  Google Scholar 

  11. P. Wang, Y. C. Lu, Y. F. Li, et al., J. Diabetes Res., 2018, 3274084 (2018).

    PubMed  PubMed Central  Google Scholar 

  12. J. M. Forbes and M. E. Cooper, Physiol. Rev., 93, 137–188 (2013).

    CAS  PubMed  Google Scholar 

  13. N. C. Chilelli, S. Burlina, and A. Lapolla, Nutr. Metab. Cardiovasc. Dis., 23, 913–919 (2013).

    CAS  PubMed  Google Scholar 

  14. L. Zhang, B. Chen, and L. Tang, Diabetes Res. Clin. Pract., 96, 283–293 (2012).

    Google Scholar 

  15. A. Hosseini and M. Abdollahi, Oxid. Med. Cell. Longev., 2013, 168039 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. S. Singh, V. Garg, and D. Yadav, Int. J. Pharm. Pharmaceut. Sci., 5, 297–302 (2013).

    Google Scholar 

  17. E. Birben, U. M. Sahiner, C. Sackesen, et al., World Allergy Organ J., 5, 9 – 19 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. K. K. Dennis, Y. M. Go, and D. P. Jones, J. Nutr., 149, 553 – 565 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. D. P. Jones, Am. J. Physiol. Cell Physiol., 295, C849 – C868 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Bouayed and T. Bohn, Oxid. Med. Cell. Longev., 3, 228 – 237 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. M. Ben Salah, A. Hafedh, and A. Manef, J. Mater. Environ. Sci., 8, 1359 – 1364 (2017).

    CAS  Google Scholar 

  22. T. Mandáková, P. Hloušková, D. A. German, and M. A. Lysak, Plant Physiol., 174, 2062 – 2071 (2017).

    PubMed  PubMed Central  Google Scholar 

  23. C. Guarino, L. De Simone, and S. Santoro, Ethnobot. Res. Appl., 6, 255 – 317 (2008).

    Google Scholar 

  24. Natural Medicine Facts. Available online: https://www.naturalmedicinefacts.info/plant/hesperis-matronalis.html (accessed on 14 March 2021).

  25. P. W. Ball, in: Flora Europaea: Psilotaceae to Platanaceae, 2nd edn, T. G. Tutin, N. A. Burges, A. O. Chater, et al. (eds.), Cambridge University Press: Cambridge, UK (1993), Vol. 1, pp. 336 – 337.

  26. Atlas Florae Europaea. Distribution of vascular plants in Europe (Cruciferae: Sisymbrium to Aubrieta), J. Jalas and J. Suominen (eds.), Helsinki University Printing House: Helsinki (1994), Vol. 10, pp. 115 – 148.

  27. C. J. Majetic, R. A. Raguso, and T. L. Ashman, Ann. Bot., 102, 911 – 922 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. A. Francis, P. B. Cavers, and S. I. Warwick, Can. J. Plant Sci., 89, 191 – 206 (2009).

    Google Scholar 

  29. S. Brasanac-Vukanovic, J. Mutic, D. M. Stankovic, et al., Molecules, 23, 1864 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. K. Bljajiæ, R. Petlevski, L. Vujiæ, et al., Molecules, 22, 703 (2017).

    Google Scholar 

  31. B. Salehi, A. Ata, N. V. Anil Kumar, et al., Biomolecules, 9, 551 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. A. Hameed, M. Galli, E. Adamska-Patruno, et al., Nutrients, 12, 2538 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. B. E. Ștefãnescu, K. Szabo, A. Mocan, and G. Crişan, Molecules, 24, 2046 (2019).

  34. C. Ancillotti, L. Ciofi, D. Pucci, et al., Food Chem., 204, 176 – 184 (2016).

    CAS  PubMed  Google Scholar 

  35. Organization for Economic Co-operation and Development (OECD). Available online: https://www.oecd.org/env/ehs/risk-management/37182285.pdf (accessed on 12 January 2020).

  36. D. A. T. Almeida, C. P. Braga, E. L. B. Novelli, and A. A. H. Fernandes, Braz. Arch. Biol. Technol., 55, 527 – 536 (2012).

    Google Scholar 

  37. S. Lenzen, Diabetologia, 51, 216 – 226 (2008).

    CAS  PubMed  Google Scholar 

  38. I. Hininger-Favier, R. Benaraba, S. Coves, et al., J. Am. Coll. Nutr., 28, 355 – 361 (2009).

    CAS  PubMed  Google Scholar 

  39. P. K. Bagul, H. Middela, S. Matapally, et al., Pharmacol. Res., 66, 260 – 268 (2012).

    CAS  PubMed  Google Scholar 

  40. B. Zhang, Q. Shen, Y. Chen, et al., Sci. Rep., 7, 44239 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. N. Sahin, C. Orhan, F. Erten, et al., J. Biochem. Mol. Toxicol., 33, e22328 (2019).

    PubMed  Google Scholar 

  42. S. A. Abdulmalekand M. Balbaa, PLoS One, 14, e0220779 (2019).

  43. X. Ma, Z. Chen, L. Wang, et al., Front. Pharmacol., 9, 782 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. E. B. Kurutas, Nutr. J., 15, 71 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. J. E. Ghoul, M. Smiri, S. Ghrab, et al., Pathophysiology, 19, 35–42 (2012).

    PubMed  Google Scholar 

  46. L. T. Rotaru, R. M. Varut, M. Banicioiu Covei, et al., Rev. Chim. (Bucharest), 69, 1860 – 1865 (2018).

    CAS  Google Scholar 

  47. A. K. Verma and R. Pratap, Nat. Prod. Rep., 27, 1571 – 1593 (2010).

    CAS  PubMed  Google Scholar 

  48. B. Halliwell, R. Aeschbach, J. Löliger, and O. I. Aruoma, Food Chem. Toxicol., 33, 601 – 617 (1995).

    CAS  PubMed  Google Scholar 

  49. O. O. Oguntibeju, Int. J. Physiol. Pathophysiol. Pharmacol., 11, 45 – 63 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Manisha, W. Hasan, R. Rajak, and D. Jat, Int. J. Adv. Res. Rev., 2, 110 – 119 (2017).

    Google Scholar 

  51. V. N. Shilpa, N. Rajasekaran, V. K. Gopalakrishnan, and K. Devaki, J. Appl. Pharmaceut. Sci., 2, 60 – 65 (2012).

    Google Scholar 

  52. E. Lubos, J. Loscalzo, and D. E. Handy, Antioxid. Redox Signal., 15, 1957 – 1997 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. V. Lobo, A. Patil, A. Phatak, and N. Chandra, Pharmacogn. Rev., 4, 118 – 126 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. G. Paolisso, A. D’Amore, D. Galzerano, et al., Diabetes Care, 16, 1433 – 1437 (1993).

    CAS  PubMed  Google Scholar 

  55. M. Mandal, A. Varghese, V. K. Gaviraju, et al., Clin. Diabetol., 8, 215 – 222 (2019).

    CAS  Google Scholar 

  56. G. Vessal, M. Akmali, P. Najafi, et al., Ren. Fail., 32, 733 – 739 (2010).

    CAS  PubMed  Google Scholar 

  57. C. I. Sajeeth, P. K. Manna, and R. Manavalan, Pharm. Sin., 2, 220 – 226 (2011).

    CAS  Google Scholar 

  58. S. S. Chung, M. Kim, B. S. Youn, et al., Mol. Cell. Biol., 29, 20 – 30 (2009).

    CAS  PubMed  Google Scholar 

  59. I. S. Young, J. Clin. Pathol., 54, 339 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. G. Cao, H. M. Alessio, and R. G. Cutler, Free Radic. Biol. Med., 14, 303 – 311 (1993).

    CAS  PubMed  Google Scholar 

  61. I. L. C. Chapple, J. Clin. Periodontol., 24, 287 – 296 (1997).

    CAS  PubMed  Google Scholar 

  62. I. L. C. Chapple, G. I. Mason, I. Garner, et al., Ann. Clin. Biochem., 34, 412 – 421 (1997).

    CAS  PubMed  Google Scholar 

  63. G. Cao and R. L. Prior, Clin. Chem., 44, 1309 – 1315 (1998).

    CAS  PubMed  Google Scholar 

  64. P. Pinzani, E. Petruzzi, C. Orlando, et al., J. Biolumin. Chemilumin., 13, 321 – 325 (1998).

    CAS  PubMed  Google Scholar 

  65. A. Nemec, M. Drobniè-Košorok, M. Skitek, et al., Acta Vet. Brno, 69, 297 – 303 (2000).

    CAS  Google Scholar 

  66. E. Bobescu, Rev. Rom. Med. Lab., 8, 13 – 19 (2007).

    Google Scholar 

  67. K. Csepregi, S. Neugart, M. Schreiner, and É. Hideg, Molecules, 21, 208 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. B. L. Tan, M. E. Norhaizan, W. P. Liew, and H. Sulaiman Rahman, Front. Pharmacol., 9, 1162 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. B. H. Havsteen, Pharmacol. Ther., 96, 67 – 202 (2002).

    CAS  PubMed  Google Scholar 

  70. C. Rice-Evans, N. Miller, and G. Paganga, Trends Plant Sci., 2, 152 – 159 (1997).

    Google Scholar 

  71. S. Li, H. Y. Tan, N. Wang, et al., Oxid. Med. Cell. Longev., 2018, 8394818 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. B. E. Ștefãnescu, L. F. Cãlinoiu, F. Ranga, et al., Antioxidants (Basel), 9, 495 (2020).

  73. Z. Rimpapa, F. Korac, J. Toromanovic, et al., Planta Med., 74, PC61 (2008).

    Google Scholar 

  74. University of Ioanina, School of Health Sciences, Faculty of Medicine, Department of Pharmacology. Available online: http: //mediplantepirus.med.uoi.gr/pharmacology en/plant details.php?id=222 (accessed on 26 February 2021).

  75. Wildflowers West, Available online: https://wildflowerswest.org/hesperis matronalis.htm (accessed on 26 February 2021).

  76. Herbs-Treat and Taste. Available online: https://herbs-treatandtaste.blogspot.com/2012/06/dames-rocket-or-sweetrocket-symbol-of.html (accessed on 26 February 2021).

  77. Mother Earth Living. Available online: https://www.motherearthliving.com/plant-profile/an-herb-to-know-dames-rocket (accessed on 26 February 2021).

  78. M. Yusuf, M. Nasiruddin, N. Sultana, et al., Res. J. Pharm. Technol., 12, 4735 – 4740 (2019).

    Google Scholar 

  79. U. J. Jung, M. K. Lee, Y. B. Park, et al., J. Pharmacol. Exp. Ther., 318, 476 – 483 (2006).

    CAS  PubMed  Google Scholar 

  80. M. Matboli, S. Eissa, D. Ibrahim, et al., Sci. Rep., 7, 2263 (2017).

    PubMed  PubMed Central  Google Scholar 

  81. Romanian Pharmacopoeia Xth Edition, National Agency for Medicines and Medical Devices of Romania, Medical Publishing House, Bucharest (1993), pp. 335, 921, 922.

  82. J. Hokkanen, S. Mattila, L. Jaakola, et al., J. Agric. Food Chem., 57, 9437 – 9447 (2009).

    CAS  PubMed  Google Scholar 

  83. R. Benedé-Ubieto, O. Estévez-Vázquez, P. Ramadori, et al., Diabetes Metab. Syndr. Obes., 13, 439 – 450 (2020).

    PubMed  PubMed Central  Google Scholar 

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florica Popescu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostici, R., Pisoschi, C.G., Popescu, F. et al. Antioxidant Action of Hesperis matronalis L. in Chronic Experimental Diabetes. Pharm Chem J 56, 1092–1106 (2022). https://doi.org/10.1007/s11094-022-02759-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02759-z

Keywords

Navigation