Skip to main content
Log in

Assay of Antioxidant Activity and Bioactive Compounds of Cornelian Cherry (Cornus mas L.) Fruit Extracts Obtained by Green Extraction Methods: Ultrasound-Assisted, Supercritical Fluid, and Subcritical Water Extraction

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Bioactive compounds of cornelian cherry (Cornus mas L.) fruits were extracted by green extraction methods including ultrasound-assisted (with three solvents: water, water/ethanol 50:50 v/v, and ethanol), supercritical fluid, and subcritical water extraction. Evaluation of the flavonoid and tocopherol compounds, β-carotene/linoleic acid test, and oil oxidative stability index assay were used to quantify the antioxidant power of cornelian cherry extracts. In β-carotene/linoleic acid test, a strong antioxidant activity of 85.84% was observed in the water/ethanol (50:50, v/v) ultrasound assisted extract, which also had the highest extraction yield and total flavonoid and tocopherol contents achieved by this method. In oil oxidative stability index assay, cornelian cherry extracts had higher resistance to oxidation than the tert-butylhydroquinone (TBHQ) synthetic antioxidant. Among the extracts, the longest induction time of 4.50 h belonged to water/ethanol (50:50, v/v) ultrasound-assisted extract. High and significant correlation was found between the extracted components and antioxidant capacity. This research demonstrated that the cornelian cherry fruit can be used as a potential source of natural antioxidant in food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. C. A. Rashid, M. Zahid Qureshi, S. A. Raza, et al., Univ. Bucuresti. Chimie., 19(1), 23 – 30 (2010).

    Google Scholar 

  2. R. Esmaeilzadeh Kenari, F. Mohsenzadeh, and Z. Raftani Amiri, Food Sci. Nutr., 2(4), 426 – 435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R. Sushma, H. Dharini, T. Sadiya, et al., Res. J. Pharm., Biol. Chem. Sci., 5(4), 624 – 632 (2014).

  4. Z. Huyut, F. Beydemir, and E. Gulcin, Biochem. Res. Int., 1 – 10 (2017).

  5. N. Hassim, M. Markom, N. Anuar, et al., Int. J. Chem. Eng., 1 – 10 (2015).

  6. O. Rop, J. Mlcek, D. Kramarova, and T. Jurikova, Afr. J. Biotechnol., 9(8), 1205 – 1210 (2010).

    Article  CAS  Google Scholar 

  7. M. Narimani-Rad, M. Zendehdel, M. Mesgari Abbasi, et al., Bull. Environ., Pharmacol. Life Sci., 2(9), 48 – 50 (2013).

  8. M. S. Stankovic, M. Zia-Ul-Haq, B. M. Bojovic, and M. D. Topuzovic, Bulg. J. Agric. Sci., 20(2), 358 – 363 (2014).

    Google Scholar 

  9. H. Hassanpour, Y. Hamidoghli, J. Hajilo, and M. Adlipour, Sci. Hortic., 129(3), 459 – 463 (2011).

    Article  CAS  Google Scholar 

  10. R. Vidrih, Ž., Čejić, and J. Hribar, Croat. J. Food Sci. Technol., 4(1), 64 – 70 (2012).

  11. T. Dhanani, S. Shah, N. A. Gajbhiye, and S. Kumar, Arab. J. Chem., 10(1), 1193 – 1199 (2013).

    Google Scholar 

  12. J. Wiboonsirikul and S. Adachi, Food Sci. Technol. Res., 14(4), 319 – 328 (2008).

    Article  CAS  Google Scholar 

  13. A. Roidaki, P. G. Zoumpoulakis, and C. Proestos, Austin J. Nutri. Food Sci., 3(1), 1 – 8 (2015).

    Google Scholar 

  14. T. W. Charpe and V. K. Rathod, Iran. J. Chem. Eng., 11(4), 21 – 30 (2014).

    Google Scholar 

  15. G. N. Sapkale, S. M. Patil, U. S. Surwase, and P. K. Bhatbhage, Int. J. Chem. Sci., 8(2), 729 – 743 (2010).

    CAS  Google Scholar 

  16. P. Garcia-Salas, A. Morales-Soto, A. Segura-Carretero, and A. Fernandez-Gutierrez, Molecules, 15(12), 8813 – 8826 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. Liu, Z. Jiao, J. Liu, et al., Food Anal. Methods, 6(3), 781 – 788 (2013).

    Article  Google Scholar 

  18. W. Poontawee, S. Natakankitkul, and O. Wongmekiat, J. Anal. Methods Chem.,1 – 7 (2015).

  19. M. Hassas-Roudsari, P. R. Chang, R. B. Pegg, and R. T. Tyler, Food Chem., 114(2), 717 – 726 (2009).

    Article  CAS  Google Scholar 

  20. S. Tunchaiyaphum, M. N. Eshtiaghi, and N. Yoswathana, Int. J. Chem. Eng. Appl., 4(4), 194 – 198 (2013).

    CAS  Google Scholar 

  21. A. Shotipruk, J. Kiatsongserm, P. Pavasant, et al., Biotechnol. Prog., 20(6), 1872 – 1875 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. A. H. Goli, M. Barzegar, and M. A. Sahari, Food Chem., 92(3), 521 – 525 (2005).

    Article  CAS  Google Scholar 

  23. M. Delfanian, R. Esmaeilzadeh Kenari, and M. A. Sahari, Food Sci. Nutr., 3(3), 179 – 187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C. C. Chang, M. H. Yang, H. M. Wen, and J. C. Chern, J. Food Drug Anal., 10(3), 178 – 182 (2002).

    CAS  Google Scholar 

  25. M. L. Wong, R. E. Timms, and E. M. Goh, J. Am. Oil Chem. Soc., 65(2), 258 – 261 (1988).

    Article  CAS  Google Scholar 

  26. A. Dapkevicius, R. Venskutonis, T. A. V. Beek, and J. P. H. Linssen, J. Sci. Food Agric., 77(1), 140 – 146 (1998).

    Article  CAS  Google Scholar 

  27. J. M. Duarte-Almeida, R. J. D. Santos, M. I. Genovese, and F. M. Lajolo, Ciênc. Tecnol. Aliment., 26(2), 446 – 452 (2006).

    Article  CAS  Google Scholar 

  28. R. Farhoosh, and M. H. Tavassoli-Kafrani, Food Chem., 125(1), 209 – 213 (2011).

    Article  CAS  Google Scholar 

  29. E. A. Hayouni, M. Abedrabba, M. Bouix, and M. Hamdi, Food Chem., 105, 1126 – 1134 (2007).

    Article  CAS  Google Scholar 

  30. S. Felhi, A. Daoud, H. Hajlaoul, et al., Food Sci. Technol., 37(3), 483 – 492 (2017).

    Article  Google Scholar 

  31. N. V. Yanishlieva–Maslarova, in: Antioxidants in food: practical applications, J. Pokorny, N. Yanishlieva, and M. Gordon, (Eds.), Cambridge: CRC Press–Woodhead Publishing (2001), pp. 22 – 70.

  32. M. Bimakr, R. A. Rahman, F. S. Taip, et al., Food Bioprod. Process., 89, 67 – 72 (2011).

    Article  Google Scholar 

  33. M. A. Rostagno, M. Palma, and C. G. Barroso, J. Chromatogr. A., 1012(2), 119 – 128 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. S. H. Rouhani, N. Alizadeh, S. H. Salimi, and T. Haji-Ghasemi, Prog. Color, Color. Coat., 2, 103 – 113 (2009).

  35. R. F. Susanti, K. Kurnia, A. Vania, and I. J. Reynaldo, Mod. Appl. Sci., 9(7), 190 – 198 (2015).

    Article  CAS  Google Scholar 

  36. A. Sharifi, S. A. Mortazavi, A. Maskooki, et al., Int. J. Agric. Crop Sci., 6(2), 89 – 96 (2013).

    Google Scholar 

  37. T. Ogunmoyole, O. O. Olalekan, O. Fatai, et al., J. Pharmacogn. Phytother., 4(5), 66 – 74 (2012).

    CAS  Google Scholar 

  38. C. Sun, Z. Wu, Z. Wang, and H. Zhang, J. Evidence-Based Complementary. Altern. Med., 1 – 9 (2015).

  39. E. E. Ezeokeke, A. C. Ene, and C. U. Igwe, Biochem. Anal. Biochem., 4(4), 1 – 4 (2015).

  40. A. Ghasemzadeh, H. Z. E. Jaafar, A. S. Juraimi, and A. Tayebi-Meigooni, Molecules, 20(6), 10822 – 10838 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Herrero, M. Castro-Puyana, J. A. Mendiola, and E. Ibanez, Trends Anal. Chem., 43, 67 – 83 (2012).

    Article  CAS  Google Scholar 

  42. N. Yoswathana, M. N. Eshiaghi, and K. Jaturapornpanich, Int. J. Chem. Mol. Nucl. Mater. Metal. Eng., 6(5), 453 – 459 (2012).

  43. K. Pycia, I. Kapusta, G. Jaworska, and A. Jankowska, Eur. Food Res. Technol., 1 – 10 (2018).

  44. A. H. Goli, F. Mokhtari, and M. Rahimmalek, J. Agric. Sci., 4(10), 175 – 181 (2012).

    Google Scholar 

  45. A. Luis, N. Gil, M. E. Amaral, et al., BioResources, 7(2), 2105 – 2120 (2012).

    Article  CAS  Google Scholar 

  46. N. Alam, K. N. Yoon, J. S. Lee, et al., Saudi J. Biol. Sci., 19(1), 111 – 118 (2012).

  47. H. M. Hadzri, M. A. C. Yunus, S. Zhari, and F. Rithwan, J. Teknol., 68(5), 47 – 52 (2014).

    Google Scholar 

  48. N. Wu, K. Fu, Y. Fu, et al., Molecules, 14(3), 1032 – 1043 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. M. L. Colombo, Molecules, 15(4), 2103 – 2113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. T. Kulisic, A. Radonic, V. Katalinic, and M. Milos, Food Chem., 85(4), 633 – 640 (2004).

    Article  CAS  Google Scholar 

  51. M. Abedi Gonabad, M. Shahidi Noghabi, and R. Niazmand, J. Appl. Environ. Biol. Sci., 4, 28 – 32 (2015).

    Google Scholar 

  52. N. Ozturk, Pak. J. Pharm. Sci., 28(2), 465 – 472 (2015).

    PubMed  Google Scholar 

  53. N. Pawar, K. Gandhi, A. Purohit, et al., J. Food Sci. Technol., 51(10), 2727 – 2733 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. R. Upadhyay and H. N. Mishra, Ind. Crops Prod., 61, 453 – 459 (2014).

    Article  CAS  Google Scholar 

  55. S. Yassari and E. Yasari, Int. J. Agric. Crop Sci., 5(4), 410 – 420 (2013).

    Google Scholar 

  56. S. C. Ren, Z. L. Liu, and P. Wang, J. Med. Plants Res., 6(2), 301 – 308 (2012).

    CAS  Google Scholar 

  57. M. A. Naeem, H. A. Zahran, and M. M. M. Hassanein, OCL: Oilseeds Fats, Crops Lipids, 26(33), 1 – 9 (2019).

  58. Y. Y. Lee, H. M. Park, T. Y. Hwang, et al., J. Sci. Food Agric., 1 – 9 (2014).

  59. J. Lalièić-Petronijević, D. Komes, S. Gorjanoviæ, et al., Food Technol. Biotechnol., 54(1), 13 – 20 (2016).

    Google Scholar 

  60. S. Noureen, S. Noreen, S. A. Ghumman, et al., Not. Bot. Horti Agrobot. Cluj-Napoca, 46(2), 653 – 662 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Sari Agricultural Sciences and Natural Resources University for their support in this research work.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynab Raftani Amiri.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillani, F., Raftani Amiri, Z. & Esmaeilzadeh Kenari, R. Assay of Antioxidant Activity and Bioactive Compounds of Cornelian Cherry (Cornus mas L.) Fruit Extracts Obtained by Green Extraction Methods: Ultrasound-Assisted, Supercritical Fluid, and Subcritical Water Extraction. Pharm Chem J 56, 692–699 (2022). https://doi.org/10.1007/s11094-022-02696-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02696-x

Keywords

Navigation