Skip to main content
Log in

Synthesis, Pass Predication of Antimicrobial Activity and Pharmacokinetic Properties of Hexanoyl Galactopyranosides and Experimental Evaluation of their Action against Four Human Pathogenic Bacteria and Four Fungal Strains

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Direct unimolar hexanoylation of methyl α-D-galactopyranoside (MDG) at low temperature gave 6-O-hexanoate in 53% yield indicating regioselectivity at the C-6 position. To develop galctopyranoside-based potential antimicrobial sugar esters (SEs), 6-O-hexanoate was further converted into seven new 2,3,4-tri-O-acyl esters in reasonably good yields. Prediction of Activity Spectra for Substances (PASS) and in vitro antimicrobial studies established these SEs as better antifungal agents as compared to antibacterials. ADMET properties reveal that these SEs can penetrate through the blood-brain barrier, they are P-glycoprotein inhibitors, noncarcinogenic, and possess lower median lethal dose (LD50) values. Drug likeliness calculations indicate that these MDG esters are in good agreement with several important parameters. Structure-activity relationship (SAR) of these SEs indicated that the incorporation of hexanoyl and octanoyl group(s) increased the antimicrobial potential of MDG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Scheme 2.
Scheme 3.
Fig. 2.

Similar content being viewed by others

References

  1. J. Lawandi, S. Rocheleau and N. Moitessier, Tetrahedron, 72, 6283 – 6319 (2016).

    Article  CAS  Google Scholar 

  2. D. D. Dhavale and M. M. Matin, Tetrahedron, 60, 4275 – 4281 (2004). https://doi.org/10.1016/j.tet.2004.03.034

    Article  CAS  Google Scholar 

  3. P. Matin, M. R. Rahman, D. Huda, et al., BioResources, 17(2), 3025 – 3041 (2022). https://doi.org/10.15376/biores.17.2.3025-3041

    Article  CAS  Google Scholar 

  4. R. P. Tomas, Curr. Med. Chem., 13, 1859 – 1876 (2006).

    Article  Google Scholar 

  5. J. Quan, Z. Chen, C. Han, et al., Bioorg. Med. Chem., 15, 1741 – 1748 (2007).

    Article  CAS  Google Scholar 

  6. J. Quan, J.-M. Xu, B.-K. Liu, et al., Enzyme Microb. Technol., 41, 756 – 763 (2007).

    Article  CAS  Google Scholar 

  7. B. L. Sorg, W. E. Hull, H.-C. Kliem, et al., Carbohydr. Res., 340, 181 – 189 (2005).

    Article  CAS  Google Scholar 

  8. J. N. Jacob and M. J. Tazawa, Bioorg. Med. Chem. Lett., 22, 3168 – 3171 (2012).

    Article  CAS  Google Scholar 

  9. M. K. Mahmmod, J. Kerbala Univ., 6(2), 4 – 10 (2008).

    Google Scholar 

  10. G. Csoka, S. Marton, R. Zelko, et al., Eur. J. Pharm. Biopharm., 65(2), 233 – 237 (2007).

    Article  CAS  Google Scholar 

  11. M. M. Matin, S. C. Bhattacharjee, P. Chakraborty, et al., Carbohydr. Res., 485, 107812 (2019). https://doi.org/10.1016/j.carres.2019.107812

    Article  CAS  PubMed  Google Scholar 

  12. A. Smith, P. Nobmann, G. Henehan, et al., Carbohydr. Res., 343, 2557 – 2566 (2008).

    Article  CAS  Google Scholar 

  13. M. M. Matin, M. M. H. Bhuiyan, E. Kabir, et al., J. Mol. Struct., 1195, 189 – 197 (2019). https://doi.org/10.1016/j.molstruc.2019.05.102

    Article  CAS  Google Scholar 

  14. M. M. Matin, M. M. H. Bhuiyan, D. C. Debnath, et al., Int. J. Biosci., 3(8), 279 – 287 (2013). https://doi.org/10.12692/ijb/3.8.279-287

    Article  CAS  Google Scholar 

  15. M. M. Matin, M. M. H. Bhuiyan, A. K. M. S. Azad, et al., Curr. Chem. Lett., 6(1), 31 – 40 (2017). https://doi.org/10.5267/j.ccl.2016.10.001

    Article  Google Scholar 

  16. M. M. Matin, Orbital: Electron. J. Chem., 6(1), 20 – 28 (2014). https://doi.org/10.17807/orbital.v6i1.553

    Article  Google Scholar 

  17. P. Nobmann, A. Smith, J. Dunne, et al., Int. J. Food Microbiol., 128, 440 – 445 (2009).

    Article  CAS  Google Scholar 

  18. R. Chen, C. Jin, Z. Tong, et al., Carbohydr. Polym., 136, 187 – 197 (2016).

    Article  CAS  Google Scholar 

  19. V. J. Morris and G. R. Chilvers, Carbohydr. Polym., 3, 129 – 141 (1983).

    Article  CAS  Google Scholar 

  20. C. Bottcher and E. W. Weiler, Planta, 226, 629 – 637 (2007).

    Article  Google Scholar 

  21. G. Catelani, F. D’Andrea, E. Mastrorilli, et al., Bioorg. Med. Chem., 10(2), 347 – 353 (2002).

    Article  CAS  Google Scholar 

  22. M. M. Matin, M. M. H. Bhuiyan, A. K. M. S. Azad, et al., J. Physical Sci., 26(1), 1 – 12 (2015).

    CAS  Google Scholar 

  23. D. Muhammad, M. M. Matin, S. M. R. Miah, et al., Orbital: Electron. J. Chem., 13(3), 250 – 258 (2021). https://doi.org/10.17807/orbital.v13i3.1614

    Article  CAS  Google Scholar 

  24. A. K. M. S. Kabir and M. M. Matin, J. Bangladesh Chem. Soc., 7(1), 73 – 79 (1994).

    CAS  Google Scholar 

  25. A. K. M. S. Kabir and M. M. Matin, J. Bangladesh Acad. Sci., 21(1), 83 – 88 (1997).

    CAS  Google Scholar 

  26. A. Corsaro, U. Chiacchio, V. Pistara, and G. Romeo, in: Microwave in Organic Synthesis, A. Loupy (Ed.), 2nd Edn., Wiley-VCH: Weinheim (2006), pp 579 – 585.

  27. T. Kobayashi, Biotechnol. Lett., 33, 1911 – 1919 (2011).

    Article  CAS  Google Scholar 

  28. A. Lagunin, A. Stepanchikova, D. Filimonov, et al., Bioinformatics, 16(8), 747 – 748 (2000). https://doi.org/10.1093/bioinformatics/16.8.747

    Article  CAS  PubMed  Google Scholar 

  29. D. A. Filimonov, A. A. Lagunin, T. A. Gloriozova, et al., Chem. Heterocyclic Com., 50(3), 444 – 457 (2014). https://doi.org/10.1007/s10593-014-1496-1

    Article  CAS  Google Scholar 

  30. M. M. Matin, A. R. Nath, O. Saad, et al., Int. J. Mol. Sci., 17(9), 1412 (2016). https://doi.org/10.3390/ijms17091412

    Article  CAS  PubMed Central  Google Scholar 

  31. M. L. Amin, Drug Target Insights, 7, 27 – 34 (2013). https://doi.org/10.4137/DTI.S12519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. M. Matin, J. Appl. Sci. Res., 2(10), 753 – 756 (2006).

    Google Scholar 

  33. K. A. Murtazalieva, D. S. Druzhilovskiy, R. K. Goel, et al., SAR QSAR Environ. Res., 28(10), 843 – 862 (2017). https://doi.org/10.1080/1062936X.2017.1399448

    Article  CAS  PubMed  Google Scholar 

  34. D. A. Filimonov, D. S. Druzhilovskiy, A. A. Lagunin, et al., Biomed. Chem.: Res. Methods, 1(1), e00004 (2018). https://doi.org/10.18097/bmcrm00004

    Article  Google Scholar 

  35. M. M. Matin, M. H. O. Roshid, S. C. Bhattacharjee, et al., Med. Res. Arch., 8(7), 2165 (2020). https://doi.org/10.18103/mra.v8i7.2165

    Article  Google Scholar 

  36. A. K. M. S. Kabir, M. M. Matin, A. F. M. Sanaullah, et al., Bangladesh J. Microbiol., 18(1), 89 – 95 (2001).

    Google Scholar 

  37. C. A. Lipinski, F. Lombardo, B. W. Dominy, et al., Adv. Drug Delivery Rev., 23, 3 – 25 (1997).

    Article  CAS  Google Scholar 

  38. M. M. Matin, P. Chakraborty, M. S. Alam, et al., Carbohydr. Res., 496, 108130 (2020). https://doi.org/10.1016/j.carres.2020.108130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. V. Judge, B. Narasimhan, M. Ahuja, et al., Med. Chem., 9(1), 53 – 76 (2013).

    Article  CAS  Google Scholar 

  40. S. Kumaresan, V. Senthilkumar, A. Stephen, et al., World J. Pharmaceut. Res., 4(1), 1035 – 1053 (2015).

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ministry of Science and Technology, Bangladesh for financial support (Sl. No. 529, Physical Science, 2018 – 2019) in completing this work.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed M. Matin.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matin, M.M., Bhuiyan, M.M.H., Kibria, S.M. et al. Synthesis, Pass Predication of Antimicrobial Activity and Pharmacokinetic Properties of Hexanoyl Galactopyranosides and Experimental Evaluation of their Action against Four Human Pathogenic Bacteria and Four Fungal Strains. Pharm Chem J 56, 627–637 (2022). https://doi.org/10.1007/s11094-022-02687-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02687-y

Keywords

Navigation