Skip to main content

Advertisement

Log in

Preparation of Papain Complexes with Chitosan Microparticles and Evaluation of Their Stability Using the Enzyme Activity Level

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Microparticles of medium- and high-molecular mass (MM) chitosan with and without ascorbic acid were obtained. Complexes of these microparticles with the plant enzyme papain were formed. The enzyme activity decreased by ?8% as compared to free papain upon formation of papain complexes with medium- and high-MM chitosan microparticles free of ascorbic acid. The papain activity increased by 18 and 10%, respectively, upon complexation in the presence of ascorbic acid. The free enzyme retained 15% of its catalytic activity after incubation for 168 h in Tris-HCl buffer (0.05 M, pH 7.5) at 37°C while the complexes with chitosan microparticles exhibited ~30% of their catalytic activity; the complex of papain with high-MM chitosan microparticles in the presence of ascorbic acid, 40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. J. Jain, Int. J. Eng. Appl. Sci. Technol., 5(6), 193 – 197 (2020).

    Google Scholar 

  2. C. S. A. Lima, J. P. R. O. Varca, K. M. Nogueira, et al., Pharmaceutics, 12(12), 12 (2020).

    Article  Google Scholar 

  3. N. F. Vasconcelos, A. P. Cunha, N. M. P. S. Ricardo, et al., Int. J. Biol. Macromol., 165, 3065 – 3077 (2020).

    Article  CAS  Google Scholar 

  4. J. Huet, Y. Looze, K. Bartik, et al., Biochem. Biophys. Res. Commun., 341(2), 620 – 626 (2006).

    Article  CAS  Google Scholar 

  5. L. Shi, R. Ermis, K. Lam, J. Cowart, et al., Wound Repair Regener., 17(6), 853 – 862 (2009).

    Article  Google Scholar 

  6. F. Figueiredo Azevedo, L. P. Santanna, V. C. Bobbo, et al., Wounds: A Compendium of Clinical Research and Practice, 29, 96 – 101 (2017).

    Google Scholar 

  7. Z. S. Silva, Jr., Y.-Y. Huang, L. F. de Freitas, et al., Sci. Rep., 6, 33270 (2016).

    Article  Google Scholar 

  8. P. S. Lopes, C. A. S. de Olive Pinto, A. R. Baby, et al., Rev. Bras. Cienc. Farm., 44, 225 – 231 (2008).

    CAS  Google Scholar 

  9. M. L. Flindt, Lancet, 313(8131), 1407 – 1408 (1979).

    Article  Google Scholar 

  10. P. K. Chakravarthy and S. Acharya, J. Young Pharm., 4(4), 245 – 249 (2012).

    Article  CAS  Google Scholar 

  11. I. I. Romanovskaya, S. S. Dekina, R. I. Chalanova, and E. P. Sotnikova, Khim.-farm. Zh., 46(3), 37 – 39 (2012); Pharm. Chem. J., 46(3), 180 – 182 (2012).

  12. F. G. Corazza, J. V. Ernesto, F. A. N. Nambu, et al., J. Drug Delivery Sci. Technol., 55, 101413 (2020).

  13. C. Leichner, C. Menzel, F. Laffleur, and A. Bernkop-Schnurch, Int. J. Pharm., 530(1 – 2), 346 – 353 (2017).

  14. B. M. Naveena, S. K. Mendiratta, and A. S. R. Anjaneyulu, Meat Sci., 68, 363 – 369 (2004).

    Article  CAS  Google Scholar 

  15. https://www.drugs.com/ingredient/papain.html.

  16. https://grls.rosminzdrav.ru/GRLS.aspx?RegNumber=&MnnR=&lf=&TradeNmR=papain&OwnerName=&MnfOrg=&MnfOrgCountry=&isfs=1&isND=1&regtype=1%2c6&pageSize=10&order=RegDate&orderType=desc&pageNum=1.

  17. K. Hafid, J. John, T. M. Sayah, et al., Int. J. Biol. Macromol., 146, 798 – 810 (2020).

    Article  CAS  Google Scholar 

  18. M. G. Kholyavka, M. A. Nakvasina, and V. G. Artyukhov, Practicum in Biotechnology: Immobilized Biological Objects in a Laboratory Work System [in Russian], Izd. Dom VGU, Voronezh (2017), pp. 8 – 33.

  19. M. A. Nakvasina, Principles of Molecular and Cellular Biology [in Russian], Izd. Dom VGU, Voronezh (2015), pp. 82 – 110.

  20. A. M. B. F. Soares, L. M. O. Goncalves, and R. D. S. Ferreira, Carbohydr. Polym., 243, 10 (2020).

    Article  Google Scholar 

  21. V. M. Yurin and T. I. Ditchenko, Immobilized Cells and Enzymes: Educational-Methodical Complex for the Educational Discipline [in Russian], BGU, Minsk (2014), pp. 37 – 39.

  22. P. S. Bakshia, D. Selvakumara, K. Kadirvelub, and N. S. Kumara, Int. J. Biol. Macromol., 150, 1072 – 1083 (2020).

    Article  Google Scholar 

  23. S. N. Kulikov, L. T. Bayazitova, O. F. Tyupkina, et al., Appl. Biochem. Microbiol., 52(5), 502 – 507 (2016).

    Article  CAS  Google Scholar 

  24. G. Crini and P. Badot, Prog. Polym. Sci., 33, 399 – 447 (2008).

    Article  CAS  Google Scholar 

  25. D. V. Gerasimenko, I. D. Avdienko, G. E. Bannikova, and O. Yu. Zueva, Appl. Biochem. Microbiol., 40(3), 253 – 257 (2004).

    Article  CAS  Google Scholar 

  26. V. A. Koroleva, M. G. Kholyavka, S. S. Ol’shannikova, and V. G. Artyukhov, Biofarm. Zh., 10(4), 36 – 40 (2018).

  27. F. L. Garcia-Carreno, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 103, 575 – 578 (1992).

  28. A. R. Sabirova, N. L. Rudakova, N. P. Balaban, et al., FEBS Lett., 584(21), 4419 – 4425 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from the Russian Science Foundation (Project No. 21-74-20053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Holyavka.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 55, No. 11, pp. 51 – 55, November, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ol’shannikova, S.S., Red’ko, Y.A., Lavlinskaya, M.S. et al. Preparation of Papain Complexes with Chitosan Microparticles and Evaluation of Their Stability Using the Enzyme Activity Level. Pharm Chem J 55, 1240–1244 (2022). https://doi.org/10.1007/s11094-022-02564-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02564-8

Keywords

Navigation