Skip to main content
Log in

Design and Synthesis of Aza-β-Carboline Analogs and their Antibacterial Evaluation

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Bacterial drug resistance has become a growing problem worldwide due to the excessive use of antibiotics in recent decades. Two small focused libraries of 5H-pyrimido[5,4-b]indole-4-carboxamides and 5H-pyrimido-[5,4-b]indole-4-ketones were designed as eudistomin Y3 and 1-acetyl-β-carboline (1-ABC) analogs and prepared via application of Inverse Electron-Demand Diels-Alder (IEDDA) reaction of 1,3,5-triazines and 3-aminoindoles. Compounds 2a and 2b were discovered to have activity against Mycobacterium bovis BCG with Minimum Inhibitory Concentration (MICs) values of 25 and 50 μg/mL respectively while compound 2e was against all three strains of Candida albicans tested with MIC values of 50 μg/mL. Moreover, compound 2e demonstrated synergistic antibacterial activity with fluconazol, which suggested that future drug candidates from this class of compounds could be used in combination with existing drugs to treat C. albicans infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Scheme 1.
Scheme 2.

Similar content being viewed by others

References

  1. J. Davies and D. Davies, Microbiol. Mol. Biol. Rev., 74, 417 – 433 (2010).

    Article  CAS  Google Scholar 

  2. E. D. Brown and G. D. Wright, Nature, 529, 336 – 343 (2016).

    Article  CAS  Google Scholar 

  3. M. Mhondoro, N. Ndlovu, D. Bangure, et al., BMC Infect. Dis., 19, 1 – 9 (2019).

    Article  CAS  Google Scholar 

  4. E. Christaki,, M. Marcou, and A. Tofarides, J. Mol. Evol., 88, 26 – 40 (2020).

    Article  CAS  Google Scholar 

  5. B. M. Kyaw, S. Arora, K. Nwe Win, et al., Afr. J. Microbiol. Res., 5, 3684 – 3692 (2011).

    CAS  Google Scholar 

  6. N. Kaur, R. Prasad, and A. Varma, Int. J. Pharm. Biol. Sci., 4, 534 – 540 (2013).

    CAS  Google Scholar 

  7. S. B. Levy and B. Marshall, Nat. Med., 10 (12 Suppl.), S122-S129 (2004).

  8. J. Herrmann, T. Lukezic, A. Kling, et al., Curr. Top. Microbiol. Immunol., 398, 339 – 363 (2016).

    CAS  PubMed  Google Scholar 

  9. L. N. Silva, K. R. Zimmer, A. J. Macedo, et al., Chem. Rev., 116, 9162 – 9236 (2016).

    Article  CAS  Google Scholar 

  10. P. Ashok, S. Ganguly, and S. Murugesan, Mini-Rev. Med. Chem., 13, 1778 – 1791 (2013).

    Article  CAS  Google Scholar 

  11. F. A. Khan, A. Maalik, Z. Iqbal, et al., Eur. J. Pharmacol., 721, 391 – 394 (2013).

    Article  CAS  Google Scholar 

  12. H. D. H. Showalter, J. Nat. Prod., 76, 455 – 467 (2013).

    Article  CAS  Google Scholar 

  13. P. Ashok, S. Ganguly, and S. Murugesan, Drug Discov. Today, 19, 1781 – 1791 (2014).

    Article  CAS  Google Scholar 

  14. A. E. Laine, C. Lood, and A. M. P. Koskinen, Molecules, 19, 1544 – 1567 (2014).

    Article  Google Scholar 

  15. C. S. Lood and A. M. P. Koskinen, Chem. Heterocycl. Compd., 50, 1367 – 1387 (2015).

    Article  CAS  Google Scholar 

  16. M. Zhang and D. Sun, Anti-Cancer Agents Med. Chem., 15, 537 – 547 (2015).

    Article  CAS  Google Scholar 

  17. R. Cao, W. Peng, Z. Wang, et al., Curr. Med. Chem., 14, 479 – 500 (2007).

    Article  CAS  Google Scholar 

  18. T. H. Won, J.-E. Jeon, S.-H. Lee, et al., Bioorg. Med. Chem., 20, 4082 – 4087 (2012).

    Article  CAS  Google Scholar 

  19. B. S. Joshi, V. N. Kamat, and D. H. Gawad, Heterocycles, 7, 193 – 200 (1977).

    Article  CAS  Google Scholar 

  20. H. J. Shin, H.-S. Lee, and D.-S. Lee, J. Microbiol. Biotechnol., 20, 501 – 505 (2010).

    CAS  PubMed  Google Scholar 

  21. M. J. Balunas and A. D. Kinghorn, Life Sci., 78, 431 – 441 (2005).

    Article  CAS  Google Scholar 

  22. B. Haefner, Drug Discov. Today, 8, 536 – 544 (2003).

    Article  CAS  Google Scholar 

  23. P. Vuorela, M. Leinonen, P. Saikku, et al., Curr. Med. Chem., 11, 1375 – 1389 (2004).

    Article  CAS  Google Scholar 

  24. G. Xu, L. Zheng, Q. Dang, et al., Synthesis, 45, 743 – 752 (2013).

    Article  CAS  Google Scholar 

  25. F. Song, X. Liu, H. Guo, et al., Org. Lett., 14, 4770 – 4773 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds of Jilin University (No. 45006050152), the Sci-Tech Development Projects of Jilin Province in China (No. 20140309010YY and No. 20180414075GH, and Changchun Discovery Sciences, Ltd.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Zhang, Qun Dang or Xu Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Wei, Q., Song, F. et al. Design and Synthesis of Aza-β-Carboline Analogs and their Antibacterial Evaluation. Pharm Chem J 55, 365–372 (2021). https://doi.org/10.1007/s11094-021-02429-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02429-6

Keywords

Navigation