Skip to main content

Advertisement

Log in

Effects of Original Compounds GSB-106, GML-3, and GZK-111 in an Experimental Lipopolysaccharide-Induced Anhedonia Model

  • MOLECULAR-BIOLOGICAL PROBLEMS OF DRUG DESIGN AND MECHANISM OF DRUG ACTION
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Antidepressant activities of the original compounds GSB-106 [bis(N-monosuccinyl-L-seryl-L-lysine) hexamethylenediamide], a mimetic of the fourth loop of brain-derived neurotrophic factor (BDNF); GML-3(N-butyl-N-methyl-1-phenylpyrrolo[1,2-a]pyrazine-3-carboxamide), a ligand of 18 kDa translocator protein (TSPO); and GZK-111 (N-phenylacetylglycyl-L-proline ethyl ester), a substitute dipeptide that is biotransformed into the neuropeptide cyclo-L-prolylglycine that affects AMPA receptors; were previously revealed at V. V. Zakusov Institute of Pharmacology in experimental models of the depressive state caused by unescapable stress conditions. The present article studied the antidepressant effects of GSB-106, GML-3, and GZK-111 in an inflammatory model of the depressive state induced by lipopolysaccharide (LPS) in male C57Bl/6 mice with an assessment of anhedonia based on the consumption of sucrose solution. LPS in a single dose of 0.5 mg/kg intraperitoneally (i.p.) caused a marked decrease of 39% (p ≤ 0.01) in the consumption of 1% sucrose solution as compared to the control group. GSB-106 administered perorally at a dose of 0.5 mg/kg 24 h after LPS increased by 20% (p ≤ 0.05) sucrose consumption reduced by LPS in mice. GML-3 administered once perorally at doses of 0.5 and 1.0 mg/kg increased sucrose consumption by 29 and 21% (p ≤ 0.01), respectively. GZK-111 administered once i.p. at a dose of 1.0 mg/kg increased sucrose consumption by 17% (p ≤ 0.05). The obtained data confirmed the antidepressant properties of GSB-106, GML-3, and GZK-111.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. R. Dantzer, Physiol. Rev., 98, 477 – 504 (2017); doi: https://doi.org/10.1152/physrev.00039.2016.

    Article  CAS  PubMed Central  Google Scholar 

  2. J. L. Remus and R. Dantzer, Int. J. Neuropsychopharmacol., 19(9), 1 – 13 (2016); doi: https://doi.org/10.1093/ijnp/pyw028.

    Article  CAS  Google Scholar 

  3. J.-C. Zhang, J. Wu, Y. Fujita, et al., Int. J Neuropsychopharmacol., 18(4), 1 – 12 (2015).

    Article  Google Scholar 

  4. J. C. O’Connor, M. A. Lawson, C. Andre, et al., Mol. Psychiatry, 14(5), 511 – 522 (2009).

    Article  Google Scholar 

  5. P. Galecki, J. Mossakowska-Wojcik, and M. Talarowska, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 80, 291 – 294 (2018); https://doi.org/10.1016/j.pnpbp.2017.03.016.

    Article  CAS  Google Scholar 

  6. T. A. Gudasheva, A. V. Tarasyuk, S. V. Pomogaibo, et al., Bioorg. Khim., 38(3), 280 – 290 (2012).

    CAS  PubMed  Google Scholar 

  7. G. V. Mokrov, O. A. Deeva, T. A. Gudasheva, et al., Bioorg. Med. Chem., 23(13), 3368 – 3378 (2015).

    Article  CAS  Google Scholar 

  8. T. A. Gudasheva, K. N. Kolyasnikova, E. A. Kuznetsova, et al., Khim.-farm. Zh., 50(11), 3 – 8 (2016); Pharm. Chem. J., 50, 705 – 710 (2017).

  9. S. B. Seredenin, T. A. Voronina, T. A. Gudasheva, et al., Acta Nat., 5(4) (19), 116 – 120 (2013).

  10. P. Yu. Povarnina, T. L. Garibova, T. A. Gudasheva, et al., Acta Nat., 10(3) (38), 81 – 84 (2018).

  11. A. V. Tallerova, P. Yu. Povarnina, E. V. Blynskaya, et al., Khim.-farm. Zh., 52(5), 15 – 17 (2018); Pharm. Chem. J., 52, 397 – 399 (2018).

  12. P. Yu. Povarnina, A. V. Tallerova, A. G. Mezhlumyan, et al., Eksp. Klin. Farmakol., 83(4), 3 – 7 (2020).

    CAS  Google Scholar 

  13. A. V. Tallerova, A. G. Mezhlumyan, A. V. Tarasyuk, et al., Khim.-farm. Zh., 54(5), 3 – 6 (2020); Pharm. Chem. Zh., 54, 431 – 434 (2020).

  14. S. B. Seredenin, M. A. Yarkova, P. Yu. Povarnina, et al., RU Pat. Appl. 2015154806, Dec.21, 2015.

  15. M. A. Yarkova, P. Yu. Povarnina, G. V. Mokrov, et al., Eksp. Klin. Farmakol., 80(4), 3 – 7 (2017).

    Google Scholar 

  16. K. N. Koliasnikova, P. Yu. Povarnina, A. V. Tallerova, et al., in: Neuroprotection – New Approaches and Prospects, M. Otero-Losada, F. Capani, and S. Perez Lloret (eds.), Intechopen, London (2020), pp. 1 – 20.

  17. F. Frenois, M. Moreau, J. O’Connor, et al., Psychoneuroendocrinology, 32(5), 516 – 531 (2007).

    Article  CAS  Google Scholar 

  18. T. Strekalova, R. Spanagel, and D. Bartsch, Neuropsychopharmacology, 29, 2007 – 2017 (2004).

    Article  Google Scholar 

  19. S. Yashiro and K. Seki, Stress (Int. J. Biol. Stress), 20, 404 – 418 (2017).

    Article  CAS  Google Scholar 

  20. R. C. Cordeiro, A. J. M. Chaves Filho, N. S. Gomes, et al., Front. Psychiatry, 10, 125 (2019).

    Article  Google Scholar 

  21. E. Painsipp, M. J. Kofer, F. Sinner, and P. Holzer, PLoS One, 6(6), e20719 (2011).

    Article  CAS  Google Scholar 

  22. S. Biesmans, L. J. R. Matthews, J. A. Bouwknecht, et al., BioMed. Res. Int., Art. ID 9085273 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Tallerova.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 55, No. 2, pp. 3 – 7, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tallerova, A.V., Mezhlumyan, A.G., Yarkova, M.A. et al. Effects of Original Compounds GSB-106, GML-3, and GZK-111 in an Experimental Lipopolysaccharide-Induced Anhedonia Model. Pharm Chem J 55, 101–105 (2021). https://doi.org/10.1007/s11094-021-02397-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02397-x

Keywords

Navigation