Skip to main content
Log in

9-Sulfonyl-9(H)-Purine Derivatives Inhibit HCV Replication Via their Degradation Species

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Cell-based screening of a privileged small molecule library led to the discovery of 9-sulfonyl-9(H)-purine as new scaffold for hepatitis C virus (HCV) inhibitors. Structure–activity relationship study with respect to the 2-, 6- and 9-positions in the purine core resulted in the identification of several active compounds with moderate potency against the HCV genotype 1b. Subsequent stability studies demonstrated that HCV inhibitors of this type were unstable in Dulbecco’s modified eagle medium (DMEM) and plasma, as well as glutathione-containing water, and their instability was closely related to their HCV inhibitory activity. A preliminary study of the mechanism of action showed that the sulfonamide bond at the 9-position of purine would be the primary degradation site and the resulting sulfonylation degradation species would mediate the anti-HCV activity of 9-sulfonyl-9(H)-purines. Results of this study demonstrated that 9-sulfonyl-9(H)-purine is an unstable scaffold for HCV inhibitors and further detailed analysis of the degradation species is needed to determine the main active components and direct target for this type of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. M. P. Manns, M. Buti, E. Gane, et al., Nat. Rev. Dis. Primers, 3, 17006 (2017).

    Article  Google Scholar 

  2. M. Götte and J. J. Feld, Nat. Rev. Gastroenterol. Hepatol., 13, 338 – 351 (2016).

    Article  Google Scholar 

  3. T. Asselah, P. Marcellin, and R. F. Schinazi, Liver Int., 38, 7 – 13 (2018).

    Article  Google Scholar 

  4. C. Sarrazin, J. Hepatol., 64, 486 – 504 (2016).

    Article  Google Scholar 

  5. M. C. Sorbo, V. Cento, V. C. D. Maio, et al., Drug Resist. Update, 37, 17 – 39 (2018).

    Article  Google Scholar 

  6. J. M. Pawlotsky, Gastroenterology, 151, 70 – 86 (2016).

    Article  CAS  Google Scholar 

  7. G. A. Reed, Curr. Protoc. Pharmacol., 75, 7.6.1 – 7.6.12 (2016).

    Google Scholar 

  8. J. L. Romine, D. R. S. Laurent, J. E. Leet, et al., ACS Med. Chem. Lett., 2, 224 – 229 (2011).

    Article  CAS  Google Scholar 

  9. N. Y. Wang, W. Q. Zuo, Y. Xu, et al., Bioorg. Med. Chem. Lett., 24, 1581 – 1588 (2014).

    Article  CAS  Google Scholar 

  10. N. Y. Wang, Y. Xu, W. Q. Zuo, et al., J. Med. Chem., 58, 2764 – 2778 (2015).

    Article  CAS  Google Scholar 

  11. W. Q. Zuo, N. Y. Wang, Y. Zhu, et al., RSC Adv., 6, 40277 – 40286 (2016).

    Article  CAS  Google Scholar 

  12. X. Tao, N. Wang, J. Wang, et al, Antimicrob. Agents Chemother., 63(12), e01237 – 19 (2019).

    Article  CAS  Google Scholar 

  13. R. Konsoula and M. Jung, Int. J. Pharm., 361, 19 – 25 (2008).

    Article  CAS  Google Scholar 

  14. S. A. Yang, S. Choi, S. M. Jeon, and J. Yu, Sci. Rep., 8, 185 (2018).

    Article  Google Scholar 

  15. L. Raj, T. Ide, A. U. Gurkar, et al., Nature, 475, 231 – 234 (2011).

    Article  CAS  Google Scholar 

  16. B. Hassannia, B. Wiernicki, I. Ingold, et al., J. Clin. Investig., 128, 3341 – 3355 (2018).

    Article  Google Scholar 

  17. T. Okamura, T. Kikuchi, K. Fukushi, et al., Bioorg. Med. Chem., 15, 3127 – 3133 (2007).

    Article  CAS  Google Scholar 

  18. T. Okamura, T. Kikuchi, M. Okada, et al., J. Cereb. Blood Flow Metab., 29, 504 – 511 (2009).

    Article  CAS  Google Scholar 

  19. U. Z. Paracha, K. Fatima, M. Alqahtani, et al., Virol. J., 10, 251 (2013).

    Article  Google Scholar 

  20. K. B. Schwarz, Free Radical Biol. Med., 21, 641 – 649 (1996).

    Article  CAS  Google Scholar 

  21. M. Yano, M. Ikeda, K. I. Abe, et al., Hepatology, 50, 678 – 688 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Science and Technology Major Project of China (2012ZX09103101-079) and Fundamental Research Funds for the Central Universities (No. A0920502051903-37).

CONFLICT OF INTEREST

The authors declare that they have no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning-Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Wang, WL., Xiao, KJ. et al. 9-Sulfonyl-9(H)-Purine Derivatives Inhibit HCV Replication Via their Degradation Species. Pharm Chem J 55, 36–45 (2021). https://doi.org/10.1007/s11094-021-02369-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02369-1

Keywords

Navigation