Skip to main content
Log in

In Vitro Pharmacological Screening of Antioxidant, Photoprotective, Cholinesterase, and α-Glucosidase Inhibitory Activities of Algerian Crataegus oxyacantha Fruits and Leaves Extracts

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Various parts of Crataegus oxyacantha (hawthorn) plant have been used in traditional medicine in many countries including Algeria. In this study, antioxidant (GOR, ABTS, FRAP, CUPRAC and phenanthroline), photoprotective, and inhibition ability of n-butanol and ethyl acetate extracts from leaves and fruits of C. oxyacantha against Alzheimer’s disease [acetylcholinesterases (AChE) and butyrylcholinesterases (BChe)] and diabetes mellitus (α-glucosidase) related enzyme activities were investigated using standard methods. According to the obtained results, all plant extracts produced significant antioxidant effects. The ethyl acetate extract of C. oxyacantha leaves having the highest total bioactive content exhibited most pronounced antioxidant potential. Moreover, the extracts exhibited inhibitory effect against α-glucosidase, which was concentration dependent. The most potent inhibitor for α-glucosidase was n-butanol extract of C. oxyacantha leaves (with IC50 = 4.99 ± 0.82 μg/mL). The results also indicated a substantial BChe inhibitory activity of n-butanol extract (IC50 = 175.35 ± 16.25 μg/mL) and ethyl acetate extract (IC50 = 148.23 ± 13.41 μg/mL). The n-butanol extract was also the most potent inhibitor of AChE (IC50 = 159.09 ± 7.68 μg/mL. In addition, the plant extracts exhibited significant photoprotective potential with sun protection factor (SPF) values ranging from 17.19 ± 0.10 to 48.66 ± 0.00. Therefore, C. oxyacantha plant has a significant potential for enhancing pharmaceutical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. J. Zhang, R. Y. Gan, S. Li, et al., Molecules, 20, 21138 – 56 (2015).

    Article  CAS  Google Scholar 

  2. I. E. Orhan, Curr. Med. Chem., 25, 4854 – 4865 (2018).

    Article  CAS  Google Scholar 

  3. M. Saoudi, R. B. Slamα-Ben Salem, M. B. Salem, et al., Biomed. Pharmacother., 114, 108795 (2019).

    Google Scholar 

  4. A. Mecheri, A. Amrani, W. Benabderrahmane, et al., Phytothérapie, 16S1, S22–S31 (2018).

    Article  Google Scholar 

  5. A. Mecheri, W. Benabderrahmane, A. Amrani, et al., Recent Pat. Food Nutr. Agric., 10, 70 – 75 (2019).

    Article  CAS  Google Scholar 

  6. W. Benabderrahmane, M. Lores, O. Benaissa, et al., Nat. Prod. Res., (2019); https://doi.org/10.1080/14786419.2019.1582044.

  7. W. Benabderrahmane, M. Lores, J. P. Lamas, et al., Nat. Prod. Res., 32, 1220–1223 (2017).

    Article  Google Scholar 

  8. M. Ali, S. Muhammad, M. R. Shah, et al., Front. Pharmacol., 8, 327 (2017).

    Article  Google Scholar 

  9. T. Wresdiyati, S. Sa’diah, A. Winarto, et al., HAYATI J. Biosci., 22, 73 – 78 (2015).

    Article  Google Scholar 

  10. A. J. Scheen. Drugs, 63, 933 – 51(2003).

    Article  CAS  Google Scholar 

  11. H. Li, F. Song, J. Xing, et al., J. Am. Soc. Mass Spectrom., 20, 1496 – 503 (2009).

    Article  CAS  Google Scholar 

  12. V. L. Singleton, J. A. J. Rossi, Amer. J. Enol. Viticult., 16, 144 – 58 (1965).

    CAS  Google Scholar 

  13. G. Topcu, A. Ay, A. Bilici, et al., Food Chem., 103, 816 – 822 (2007).

    Article  CAS  Google Scholar 

  14. A. Kumaran and R. J. Karunakaran, LWT, 40, 344 – 352 (2007).

    Article  CAS  Google Scholar 

  15. H. Shi, N. Noguchi, E. Niki, et al., Meth. Enzymol., 335, 157 – 66 (2001).

    Article  CAS  Google Scholar 

  16. R. Re, N. Pellegrini, A. Proteggente, et al., Free Radical Biol. Med., 26, 1231–1237 (1999).

    Article  CAS  Google Scholar 

  17. M. Ozturk, M. E. Duru, S. Kivrak, et al., Food Chem. Toxicol., 49, 1353 – 60 (2011).

    Article  Google Scholar 

  18. A. Szydlowska-Czerniaka, C. Dianoczki, K. Recseg, et al., Talanta, 76, 899 – 905 (2008).

    Article  Google Scholar 

  19. R. Apak, K. Guclu, M. Ozyurek, et al., J. Agric. Food Chem., 52, 7970 – 7981 (2004).

    Article  CAS  Google Scholar 

  20. M. Oyaizu, Jpn. J. Nutr., 44, 307 – 315 (1986).

    Article  CAS  Google Scholar 

  21. G. L. Ellman, D. Courtney, V. Andres, et al., Biochem. Pharmacol., 7, 88 – 95 (1961).

    Article  CAS  Google Scholar 

  22. S. Lordan, T. J. Smyth, A. Soler-Vila, et al., Food Chem., 141, 2170 – 2176 (2013).

    Article  CAS  Google Scholar 

  23. J. S. Mansur,M. N. R. Breder,M. C. A. Mansur, et al., An. Bras. Dermatol. Rio De Janeiro, 61, 121 – 124 (1986).

    Google Scholar 

  24. R. M. Sayre, P. P. Agin, G. J. Levee, et al., Photochem. Photobiol., 29, 559 – 566 (1979).

    Article  CAS  Google Scholar 

  25. W. Mahmood, H. Saleem, W. Shahid, et al., Biocatal. Agric Biotechnol., 18, 101039 (2019).

    Google Scholar 

  26. D. Zheleva-Dimitrova. Pharmacogn Mag, 9, 109–113 (2013).

    Article  Google Scholar 

  27. A. Ali Reza, M. S. Hossain, S. Akhter, et al., BMC Complement. Altern. Med., 18, 123 (2018).

    Article  CAS  Google Scholar 

  28. H. Rasouli, S. M. Hosseini-Ghazvini, H. Adibi, et al., Food Funct., 8, 1942 – 1954 (2017).

    Article  CAS  Google Scholar 

  29. H. Jouad, A. Lemhadri, M. Maghrani, et al., J. Herb. Pharmacother., 3, 19 – 29 (2003).

    Article  Google Scholar 

  30. J. C. Mejia-Giraldo, K. Henao-Zuluaga, C. Gallardo, et al., Photochem. Photobiol., 92, 150 – 157 (2015).

    Article  Google Scholar 

  31. A. Amrani, A. Mecheri, C. Bensouici, et al., Biocatal. Agric. Biotechnol., 20, 101209 (2019).

    Google Scholar 

  32. A. Jarzycka, A. Lewiñska, R. Gancarz, et al., J. Photochem. Photobiol. B, 128, 50 – 57 (2013).

    Article  CAS  Google Scholar 

  33. R. G. De-Oliveira-Junior, C. A. A. Ferraz, G. R. Souza, et al., Biotechnol. Biotechnol. Equit., 31, 600 – 605 (2017).

    Article  Google Scholar 

  34. R. Stevanato, M. Bertelle, and S. Fabris, Regul. Toxicol. Pharmacol., 69, 71 – 77 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express thanks to the Algerian Ministry of Higher Education and Scientific Research for PRFU Project (D01N01UN250120180009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Amrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mecheri, A., Amrani, A., Benabderrahmane, W. et al. In Vitro Pharmacological Screening of Antioxidant, Photoprotective, Cholinesterase, and α-Glucosidase Inhibitory Activities of Algerian Crataegus oxyacantha Fruits and Leaves Extracts. Pharm Chem J 54, 1150–1156 (2021). https://doi.org/10.1007/s11094-021-02334-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-021-02334-y

Keywords

Navigation