Skip to main content

Advertisement

Log in

Validation of Related-Substances Determination Methods for Detecting Unidentified Substances (A Review)

  • STRUCTURE OF CHEMICAL COMPOUNDS, METHODS OF ANALYSIS AND PROCESS CONTROL
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The review justifies the need to validate the linearity, relative accuracy, and precision of Related Substances methods for detecting unidentified substances. Various approaches and methods for the estimation of linearity, precision, relative accuracy, and other validation characteristics for unidentified impurities are considered. The conditions necessary for the correct application of these approaches are discussed. The term “main unidentified impurities” is proposed and justified for assessing the validation results. Acceptance criteria, examples, and recommendations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. If unidentified impurities are ignored during validation of RSB procedures then even stress tests are not always conducted [12, 13] although, as a rule, the specificity of an RSB procedure cannot be correctly evaluated without them.

  2. Acceptance criteria are numerical limits, ranges, or other criteria used to accept test results.

  3. Information on the required columns for USP procedures: http://www.usp.org/resources/chromatographic-columns; for European compendial procedures, in Knowledge Database: https:/extranet.edqm.eu/publications/recherches sw.shtml.

References

  1. International Conference on Harmonization (ICH) Harmonised Tripartite Guideline, ICH Q2(R1), Validation of Analytical Procedures: Text and Methodology, Geneva (2005); https: // database.ich.org/sites/default/files/Q2R1Guideline.pdf.

  2. The United States Pharmacopoeia Validation of compendial procedures, USP41-NF36 (2018).

  3. State Pharmacopoeia of the Russian Federation, XIVth Ed., Vol. 1, Moscow (2018), pp. 276 – 288; http: // femb.ru/femb/pharmacopea.php.

  4. Technical Guide for the Elaboration of Monographs, 7th Ed., EDQM, European Pharmacopoeia (2015); https: //www.edqm.eu/sites/default/files/technicalguide for the elaboration of monographs 7th edition 2015.pdf.

  5. Y. C. Lee, “Method validation for HPLC analysis of related substances in pharmaceutical drug products,” in: Analytical Method Validation and Instrument Performance Verification, John Wiley & Sons (2004), pp. 27 – 49; https: // https://doi.org/10.1002/0471463728.ch3.

  6. I. Taverniers, M. De Loose, and E. Van Bockstaele, Trends Anal. Chem., 23(8), 535 – 552 (2004); doi: https://doi.org/10.1016/j.trac.2004.04.001.

    Article  CAS  Google Scholar 

  7. D. M. Bliesner, Validating Chromatographic Methods. A Practical Guide, Wiley & Sons Ltd., Hoboken, New Jersey (2006), pp. 116 – 138.

    Book  Google Scholar 

  8. V. V. Beregovykh (ed.), Validation of Analytical Methods for Drug Manufacturers. Typical Facility Guideline for Drug Manufacturing [in Russian], Literra, Moscow (2008); Validierung analytischer Verfahren der fiktiven Firma “Muster” fur die Arznemittel-Herstellung (der Bundesverband der Arzneimittel-Hersteller), BAH (2004).

  9. M. E. Swartz and I. S. Krull, Handbook of Analytical Validation, CRC Press, Boca Raton-London-New York (2012), pp. 121 – 164.

    Book  Google Scholar 

  10. Method Validation in Pharmaceutical Analysis. A Guide to Best Practice, 2nd Ed., J. Ermer and P. W. Nethercote (eds.), Wiley-VCH Verlag GmbH & Co,Weinheim (Germany) (2014).

  11. A. I. Grizodub, Standardized Validation Procedures for Drug Quality Control Methods. State Facility “Ukraine Scientific Pharmacopoeial Center for Drug Quality” [in Russian], Kharkov (2016), pp. 69 – 97; http: // sphu.org/wp-content/uploads/2017/01/content-Gryzodub-book.pdf.

  12. S. W. Baertschi, K. M. Alsante, and R. A. Reed (eds.), Pharmaceutical Stress Testing: Predicting Drug Degradation, 2nd Ed., Informa Healthcare (2011).

  13. N. A. Epshtein, Razrab. Regist. Lek. Sredstv, No. 3, 118 – 132 (2016); https: // www.pharmjournal.ru/jour/article/view/298/294.

  14. N. A. Epshtein, Razrab. Regist. Lek. Sredstv, 8(2), 122 – 130 (2019); https: // www.pharmjournal.ru/jour/article/view/692/673; N. A. Epshtein, Drug Dev. Regist., 8(2), 122 – 130 (2019); https: // www.researchgate.net/publication/ 334971858_VALIDATIONNo._ OF_ANALYTICAL_PROCEDURES_GRAPHIC_ AND_CALCULATED_CRITERIA_FOR_ASSESSMENT_OF_METHODS LINEARITY_Ino.PRACTICE.

  15. N. A. Epshtein, Khim.-farm. Zh., 52(7), 50 – 60 (2018); doi: https://doi.org/10.30906/0023-1134-2018-52-7-50-60.

    Article  Google Scholar 

  16. EAEU, Guideline for Validation of Analytical Methods for Conducting Drug Trials, Approved by Decision of the College of the Eurasian Economic Commission of Jul. 17, 2018, No. 113; https: // docs.eaeunion.org/docs/ru-ru/01418296/clcd_20072018_113.

  17. K. Doerffel, Statistik in der analytischen Chemie, Deutscher Verlag fur Grundstoffindustrie, Leipzig (1990) [Russian translation, Mir, Moscow (1994), p. 177].

  18. N. A. Epshtein, Khim.-farm. Zh., 53, No. 5, 55 – 60 (2019); doi: https://doi.org/10.30906/0023-1134-2019-53-5-55-60.

    Article  Google Scholar 

  19. IncreaseWaters 996 Photodiode Array Detector Sensitivity with Maxplot, Waters (2009); http: // www.waters.com/webassets/cms/library/docs/wpp06.pdf.

  20. N. A. Epshtein, Razrab. Regist. Lek. Sredstv, 8(1), 108 – 112 (2019); https: //www.pharmjournal.ru/jour/article/view/656.

    Google Scholar 

  21. N. A. Epshtein, Khim.-farm. Zh., 53(12), 48 – 57 (2019); doi: https://doi.org/10.30906/0023-1134-2019-53-12-48-57.

    Article  Google Scholar 

  22. European Pharmacopoeia, 9.5th Ed., Chap. 2.2.46, Chromatographic Separation Techniques, EDQM, Strasbourg (2018).

  23. N. A. Epshtein, Razrab. Regist. Lek. Sredstv, 14(1), 106 – 117 (2016); https: //www.pharmjournal.ru/jour/article/view/229/226.

    Google Scholar 

  24. N. A. Epshtein, Khim.-farm. Zh., 38(4), 40 – 56 (2004); http: //chem.folium.ru/index.php/chem/article/view/2339/1826.

    Google Scholar 

  25. T. Fornstedt, P. Forssen, and D. Westerlund, Trends Anal. Chem., 81, 42 – 50 (2016); doi: https://doi.org/10.1016/j.trac.2016.01.008.

    Article  CAS  Google Scholar 

  26. N. A. Epshtein, Vedomosti HTsESMP, 7, No. 2, 85 – 91 (2017); https: //www.vedomostincesmp.ru/jour/article/view/124/123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Epshtein.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 54, No. 9, pp. 48 – 56, September, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epshtein, N.A., Sevast’yanova, V.L. & Koroleva, A.I. Validation of Related-Substances Determination Methods for Detecting Unidentified Substances (A Review). Pharm Chem J 54, 959–967 (2020). https://doi.org/10.1007/s11094-020-02303-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02303-x

Keywords

Navigation