Skip to main content
Log in

Synthesis and Gastroprotective Evaluation of New Synthetic Indole Imines on Animal Models

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

The present study was designed to carry out the synthesis of targeted N-arylindole imines (derived from 4,5,6-trimethoxy-2,3-diphenyl-1H-indole-7-carbaldehyde), their characterization by spectroscopic and spectrometric methods, and evaluation of gastroprotector activity. The gastroprotective potential of indole imines (5 – 10) was elucidated after peroral administration of compounds in various doses to h EtOH-induced and indomethacin-induced gastric ulcers. In order to determine the mechanism of drug action, the effects of compounds on pH, ulcer index, gastric volume, gastric mucus content, and antioxidant biomarkers were determined. Among five newly synthesized compounds, two halogen derivatives (8 and 9) showed significant protection at 40 and 60 mg/kg doses as compared to standard drug omeprazole. In EtOH-induced gastric ulcer model, indole imine 9 significantly increased the mucus content. Both compounds (8 and 9) were found to attenuate the formation of gastric lesions in indomethacin-induced ulcer model. The serum values of antioxidant biomarkers revealed promising increase in total antioxidant status by compounds 8 and 9. The obtained results suggest the synthetic indole imines 8 and 9 to be remarkable gastroprotective compounds capable of modulating oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. D. S. Falco, J. A.Leite, J. M. Barbosa-Filho, et al., Molecule, 13(12), 3198 – 3223. (2008).

  2. J. U. Park, J. H. Kang , M. A. Rahman, et al., BioMed Res. Intern., 2019.

  3. A. Zolezzi, Rev Gastroenterol Peru, 18, 44 – 55 (1998).

    PubMed  Google Scholar 

  4. H. M Spiro, Pharmacotherapy, 2(2), 67 – 71 (1982).

  5. D. E. Butler, R. A. Purdon, and P. Bass, Am. J. Dig. Dis., 15(2), 157 – 170 (1970).

    Article  CAS  Google Scholar 

  6. T. Kawamura, A. Torii, H .Nozawa, et al., ExcerptaMedica (Amsterdam), 48 – 60 (1985).

  7. A. Ariyoshi, F. Toshihara, M. Sugimura, et al., Folia Pharmacol., 87, 551 (1986).

    Article  Google Scholar 

  8. S. P. Shraddha and R. D. Kamlesh, IJRPC, 6(2), 301 – 311 (2016).

    Google Scholar 

  9. R. Malcolm, A. W. Zalay, R. Oesterlin, et al., J. Med. Chem., 20, 537 (1977).

    Article  Google Scholar 

  10. H. Tokuyama, S. Yokoshima, T. Yamashita, and T. Fukuyama, Tetrahedron Lett, 39(20), 3189 – 3192 (1998).

    Article  CAS  Google Scholar 

  11. A. D. Batcho and W. Leimgruber, Org. Synth., 63, 214 – 220 (1985).

    Article  CAS  Google Scholar 

  12. B. Robinson, Chem. Rev., 69(2), 227 – 250 (1969).

  13. K. Karakaya, F. Barut, and V. Hanci, Bratisl. Lek Listy, 116(1), 51 – 56. (2015).

  14. N. Poornima, P. Revathi, and T. Parimelazhagan, J. Food Drug Anal., 23(3), 376 – 386 (2015).

    Article  Google Scholar 

  15. B. A. Michael, A. Charles, G. Isaac, et al., Ulcer Agents. Ulcers, 1(2), 12 (2013).

    Google Scholar 

  16. S. J. Corne and S. M. Morrissey, J. Physiol., 242, 116 – 117 (1974).

    Google Scholar 

  17. N. A. Konan, E. M. Bacchi, N. Lincopan, et al., J. Ethnopharmacol., 110(1), 30 – 38 (2007).

    Article  Google Scholar 

  18. M. Lee, S. M. Kallal, and M. Feldma, Aliment Pharmacol Ther., 10(4), 571 – 576 (1996).

    Article  CAS  Google Scholar 

  19. P. Govind and J. Saurabh, Res. J. Pharmacol., 4, 66 – 68 (2010).

    Article  Google Scholar 

  20. O. Erel, Clin. Biochem., 38, 1103 – 1111 (2005).

    Article  CAS  Google Scholar 

  21. M. S. Blois, Nature, 26, 1199 – 1200 (1958).

    Article  Google Scholar 

  22. D. St. C. Black, B. M. K. C. Gatehouse, F. Theobald, and L. C. H. Wong, Aust. J. Chem., 33, 343 – 350 (1980).

    Article  CAS  Google Scholar 

  23. D. St. C. Black, N. Kumar, and L. C. H. Wong, Aust. J. Chem., 39, 15 – 20 (1986).

    Article  CAS  Google Scholar 

  24. D. St. C. Black, M. C. Bowyer, P. K. Bowyer, et al., Aust. J. Chem., 47, 1741 – 1750 (1994).

    Article  CAS  Google Scholar 

  25. A. Vilsmeier and A. Haack, Chem. Ber., 60, 199 (1927).

    Article  Google Scholar 

  26. I. A. Al-Mofleh, A. A. Alhaider, J. S. Mossa, et al., Saudi J. Gastroenterol., 14(3), 128 – 134 (2008).

    Article  Google Scholar 

  27. F. E. Júnior, D. R. Oliveira, and A. A. Boligon, J. Ethnopharmacol., 153(2), 469 – 477 (2014).

    Article  Google Scholar 

  28. S. Vedavyasa, Indian J. Exp. Biol., 37, 365 – 369 (1999).

    Google Scholar 

  29. P. Muralidharan and J. Srikanth, J. Sci. Res., 1(2), 345 – 352 (2009).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alia Erum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, M.S., Raza, A.R., Aziz, M. et al. Synthesis and Gastroprotective Evaluation of New Synthetic Indole Imines on Animal Models. Pharm Chem J 54, 26–35 (2020). https://doi.org/10.1007/s11094-020-02150-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02150-w

Keywords

Navigation