Skip to main content
Log in

Determination of the Antioxidant Capacity of Tragopogon Pratensis Species and Testing Their Pancreatic and Hepatic Regenerative Activity

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

This experimental study was aimed at assessing the total polyphenol and flavonoid content of Tragopogon pratensis (folium) vegetal extract and evaluating the histopathological status of mice with liver problems and diabetes during therapy with 20% hydroalcoholic extract of T. pratensis (folium). The diabetes in mice was induced by single intraperitoneal (i.p.) dose of 180 mg/kg b.w. streptozotocin. The experiment involved two congtrol groups: the first (I) group consisted of mice with normal pancreatic function; the second (II) group consisted of mice with experimentally induced diabetes. The third (III) group of mice with experimentally induced diabetes was treated with T. pratensis extract at a dose of 150 mg/kg b.w.. The first and second groups were not treated, while the third group received daily the established medication once a day, in the morning at the same time (9 a.m), for five weeks. The obtained results showed that the administration of T. pratensis tincture triggers the hepatic regenerative processes, restores functional activity of the liver, and positively influences functionality of the pancreas. The molecular docking analysis supports results of the experimental study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. A. C. Maritim, R. A. Sanders, and J. B. Watkins, J. Biochem. Mol. Toxicol., 17(1), 24 – 38 (2003).

    Article  CAS  Google Scholar 

  2. R. M. Văruţ, C. E. Gîrd, L. T. Rotaru, et al., Pharm. Chem. J., 51, 1088 (2018).

    Article  Google Scholar 

  3. P. M. Patricia, Curr. Opin. Pharmacol., 9, 771 – 779 (2009).

    Article  Google Scholar 

  4. D. A. Butterfiel, Ann. N. Y. Acad. Sci., 8, 448 – 462 (1998).

    Article  Google Scholar 

  5. H. Esterbauer, R. J. Schaur, and H. Zollner, Free Rad. Biol. Med., 11(1), 81 – 128 (1991).

    Article  CAS  Google Scholar 

  6. F. Giacco and M. Brownlee, Circ. Res.,107(9), 1058 – 1070 (2010).

    Article  CAS  Google Scholar 

  7. R. M. Văruţ, L. T. Rotaru, and M. C. Văruţ, Rev. Chim., 68(8), 1776 – 1779 (2017).

    Google Scholar 

  8. T. Lengauer and M. Rarey, Curr. Opin. Struct. Biol., 6(3), 402 – 406 (1996).

    Article  CAS  Google Scholar 

  9. D. Amzoiu, A. M. Stoian, E. Amzoiu, et. Al., Rev. Chim., 66(12), 2013 – 2016 (2015).

    CAS  Google Scholar 

  10. D. B. Kitchen, H. Decornez, J. R. Furr, et. al., Drug Discovery, 3(11), 935 – 949 (2004).

    Article  CAS  Google Scholar 

  11. C. Florescu, L. T. Rotaru, and R. M. Varut., Rev. Chim., 69(4), 837 – 839 (2018).

    CAS  Google Scholar 

  12. T. Miyase, H. Kohsaka, and A. Ueno, Phytochemistry, 31(6), 2087 – 2091 (1992).

    Article  CAS  Google Scholar 

  13. R. Fitter, A. Fitter, and B. Marjorie,Wild Flowers of Britain and Ireland – New Guide to Our Wild Flowers, Bloomsbury Publishing PLC (2003), pp. 294 – 295

  14. http: //en.wikipedia.org/wiki/Tragopogon pratensis

  15. V. D. Mitic, S. Jovanovic, and M. D. Ilic, Bulg. Chem. Commun., 46(2), 269 – 276 (2014).

    CAS  Google Scholar 

  16. R. M. Varut and L. T. Rotaru, Rev. Chim., 68(2), 228 – 231 (2017).

    CAS  Google Scholar 

  17. S. P. Ionescu and E. Savopol, Extract farmaceutice vegetable, Ed. Medicală, Bucureşti (1997), pp. 85 – 87.

  18. I. Popovici and D. Lupuleasa, Tehnologie farmaceuticã, Ed. Polirom, Iaşi (1997), Vol. 1, pp. 359 – 389

  19. Farmacopeea Română, Ediþia X-a, Ed. Medicală, Bucureşti (1993), pp. 921 – 922, 983 – 989, 1019 – 1021, 1051–1055.

  20. R. M. Varut, Med. Res. Chronicles, 6(1), 45 – 49 (2019).

    Google Scholar 

  21. A. Berbecaru-Iovan, Cercetări farmacognostice şi farmacologice asupra unor specii vegetale cu virtuþi hipoglicemiante, Craiova (2009), pp. 119 – 123.

  22. M. D. Hanwell, D. E. Curtis, D. C. Lonie, et. al., J. Cheminform., 4, 17 (2012).

    Article  CAS  Google Scholar 

  23. Protein Data Bank, http: //www.pdb.org/pdb/home/home.do

  24. https: //zhanglab.ccmb.med.umich.edu/ModRefiner/

  25. W. L. DeLano, PyMOL, DeLano Scientific, San Carlos, CA (2002), p. 700.

  26. S. P. Nair, N. C. Shah, and R. M. Shah., Biomed. Res., 23(3), 402 – 404 (2012).

    CAS  Google Scholar 

  27. M. Akhlaghi and B. Bandy, J. Mol. Cell. Cardiol., 46, 309 – 317 (2009).

    Article  CAS  Google Scholar 

  28. G. Sudha, M. Sangeetha, R. Shree, and S. Svadivukkarasi, Int. J. Curr. Pharm. Res., 2, 137 – 140 (2011).

    Google Scholar 

  29. H. F. Waer and S. A. Helmy, J. Nutr. Food Sci., 2, 165 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Maria Văruţ.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 53, No. 11, pp. 10 – 10, November, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotaru, L.T., Văruţ, R.M., Amzoiu, E. et al. Determination of the Antioxidant Capacity of Tragopogon Pratensis Species and Testing Their Pancreatic and Hepatic Regenerative Activity. Pharm Chem J 53, 964–970 (2020). https://doi.org/10.1007/s11094-020-02106-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02106-0

Keywords

Navigation