Skip to main content

Advertisement

Log in

In vivo antidiabetic and antioxidant activities of Prosopis africana fruit extracts in streptozotocin-induced diabetic Wistar rats

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

The effect of Prosopis africana fruit extracts on biochemical indices, blood glucose level, lipid profile, and its antioxidant potentials in diabetic rats was studied. In addition, structural elucidation of the extracts with HPLC was carried out. Sixty male Wistar rats, grouped into 10 were used. Groups II–X were given a single intraperitoneal dose of 40 mg/kg freshly prepared streptozotocin injection. Groups I and II were normal and diabetic control respectively. Groups III–V and VII–IX were treated with 50, 100, and 200 mg/kg coconut water extract and aqueous extract of the fruit, respectively. Group VI was treated with 1 ml/kg coconut water only while group X was treated with 21.4 mg/kg of metformin. Treatment lasted for 14 days. Hence, the animals were sacrificed liver and kidney were excised and used for various analyses. HPLC revealed compounds like ferrulic acid, isovitexin, and vicenin in coconut water extract only. At the end of the experiment, diabetic rats administered extracts (especially coconut water extract) demonstrated significant (p < 0.05) decrease in blood glucose and bilirubin levels, as well as serum AST, ALP, ALT activities, and lipid profiles. Also, diabetic rats administered extracts exhibited significant (p < 0.05) increase in albumin and HDL levels, as well as serum antioxidant enzyme activities (p < 0.05) when compared with the diabetic control. Hence, coconut water extract may be useful in managing diabetes mellitus conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Only on special requests from the corresponding author.

References

  1. Osadebe PO, Odoh EU, Uzor PF. The search for new hypoglycemic agents from plants. Afr J Pharm Pharmacol. 2014;8(11):292–303. https://doi.org/10.5897/AJPP2014.3933.

    Article  Google Scholar 

  2. Pagana KD, Pagana TJ, Pagana TN. Mosby’s diagnostic and laboratory test reference. 14th ed. St Louis, MO: Elsevier eBook on VitalSource; 2019.

    Google Scholar 

  3. Anjana RM, Unnikrishnan R, Mugilan P, Jagdish PS, Parthasarathy B, Deepa M, Loganathan G, Kumar RA, Rahulashankiruthiyayan T, Sankari GU, Venkatesan U, Mohan V, Rani CSS. Causes and predictors of mortality in Asian Indians with and without diabetes–10 year follow-up of the Chennai Urban Rural Epidemiology Study (CURES - 150). PLoS One. 2018;13(7):e0197376. https://doi.org/10.1371/journal.pone.0197376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andrew EU, Baba MM, Mansur AR, Ibrahim DG, Fabian HP, Ayekame TU, Musa MB, Kabiru BS. Prevalence and risk factors for diabetes mellitus in Nigeria: a systematic review and meta-analysis. Diabetes Ther. 2018;9(3):1307–16.

    Article  Google Scholar 

  5. Mansour A, Mohajeri-Terhrani MR, Samuel M, Gerami H, Qorban M, Bellissimo N. Risk factors for non-alcoholic fatty liver disease-associated hepatic fibrosis in type 2 diabetic patients. Acta Diabetol. 2019;56(11):1199–207.

    Article  PubMed  Google Scholar 

  6. Arkiath VR, Elias CC, Joseph MP. Non-pharmacological treatment options in the management of diabetes mellitus. Eur J Endocrinol. 2018;14(2):31.

    Article  Google Scholar 

  7. Soeren O, Martin K, Shusmita, k., Shamin, H.T. and Hans, H. Traditional medicinal treatment of diabetes in rural and urban areas of Dhaka, Bangladesh- an ethnobotanical survey. J Ethnobiol Ethnomed. 2013;9(1):1–8.

    Google Scholar 

  8. Kooti W, Moradi M, Akbori SA, Sharafi-Ahrazi N, AsadiSamani M, Ashtary-Larky D. Therapeutic and pharmocological potential of Foerniculum vulgare mill: a review. J HerbMed Pharmacol. 2015;4(1):1–9.

    CAS  Google Scholar 

  9. Michael CD, Anderson JM, Adam SA, Kudva YC. Single dose streptozotocin induced diabetes: consideration for study design in islet transplantation models. Lab Anim. 2011;45(3):131–40.

    Article  Google Scholar 

  10. Tewanou H, Dossou SJ, Charlemagne G, Christine AI, Nougbodé O, Nestor S. Structural characterization of Prosopis africana populations (Guill. Perrott., and Rich.) Taub in Benin. Int J For Res. 2015;2015:101373. https://doi.org/10.1155/2015/101373.

    Article  Google Scholar 

  11. Tveden-Nyborg P, Bergmann TK, Jessen N, Simonsen U, Lykkesfeldt J. BCPT policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2021;2021(128):4–8. https://doi.org/10.1111/bcpt.13492.

    Article  CAS  Google Scholar 

  12. Zaib A. A reversed phase HPLC-DAD method for the determination of phenolic compounds in plant leaves. Anal Methods. 2015;7:7753–7.

    Article  Google Scholar 

  13. Zafar M, Sharif A, Khan D, Akhtar B, Muhammad F, Akhtar MF, Fatima T. Preventive effect of Euphorbia royleana Boiss on diabetes induced by streptozotocin via modulating oxidative stress and deoxyribonucleic acid damage. Toxin Rev. 2020;40(4):777–90. https://doi.org/10.1080/15569543.2020.1780262.

    Article  CAS  Google Scholar 

  14. Mattenheimer H. CK-MB Methods and clinical significance, proceedings of the CK-MB symposium. Philadelphia. 1981;1981(51):57.

    Google Scholar 

  15. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Amer J Clin Path. 1957;28(1):56–63.

    Article  CAS  Google Scholar 

  16. Englehardt A. Measurement of alkaline phosphatase. Aerdti or aerzti Labor. 1970;16:42–3.

    Google Scholar 

  17. Gabor S. A kinetic photometric method of serum γ-glutamyl transpeptidase. Clin Chem. 1969;15(2):124–36.

    Article  Google Scholar 

  18. Trinder P. Enzymatic determination of glucose in blood serum. Ann Clin Biochem. 1969;6:24.

    Article  CAS  Google Scholar 

  19. Tietz NW. Serum triglyceride determination. Clinical Guide to Laboratory Tests. Philadelphia, USA: Second Edition W.B. Saunders CO; 1990. p. 554–556. 31.

    Google Scholar 

  20. Grove TH. Effects of reagent pH on the determination of high-density lipoprotein cholesterol by precipitation with sodium phosphotungstate-magnesium. Clin Chem. 1979;25(4):560–4.

    Article  CAS  PubMed  Google Scholar 

  21. Friedwald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low density lipoprotein cholesterol in the plasma, without the use of preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

    Article  Google Scholar 

  22. Sinha AK. Colorimetric assay of catalase. J Anal Biochem. 1972;47:389–94.

    Article  CAS  Google Scholar 

  23. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and s simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5.

    Article  CAS  PubMed  Google Scholar 

  24. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–8.

    CAS  PubMed  Google Scholar 

  25. Leopold F, Wolfgang AG. Assays of glutathione peroxidase. Meth Enzymol. 1984;105(1):114–21.

    Google Scholar 

  26. Akram TK, Hisham MD. Diabetes mellitus: the epidemic of the century. World J Diabetes. 2015;6(6):850–67.

    Article  Google Scholar 

  27. Kumar AK, Manhas RK, Harish K, Bisht NS. Ethnobotanical study of plants of Pauri district of Uttarakhand, India. J Ethnopharmacol. 2021;276:114204. https://doi.org/10.1016/j.jep.2021.114204.

    Article  CAS  PubMed  Google Scholar 

  28. Susana OM, Tonny A, Mary-Ann A, Peter AJ, Daniel B, Doris K, Alfred A, Augustine O, Yaw DB, Christian A. Medicinal plants for treatment of prevalent diseases. Pharmacogn-Med Plants. 2019; https://doi.org/10.5772/intechopen.82049.

  29. Sayantani C, Sumit G, Abhishek KD, Parames CS. Ferrulic acid protects hyperglycemia-induced kidney damage by regulating oxidative insult, inflammation and autophagy. Front Pharmacol. 2019; https://doi.org/10.3389/fphar.2019.00027.

  30. Ibrahim LA, Samuel KK, Winfred SG, Daniel B. Multitargeted effect of vitexin and isovitexin on diabetes mellitus and its complications. Sci World J. 2021;1:1–20.

    Google Scholar 

  31. Woan ST, Palanisamy A, Shio-Fern N, Che NMT, Murni NS, Sharida F. Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Spragu Dawley rats. BMC Complement Altern Med. 2019;19(1):1–16.

    Google Scholar 

  32. Hana A, Will M, Yao W, Jing L, Ryan PM, Wei Z, Kequan Z, Dongmin L. The flavonoid kaempferol ameliorates streptozotocin-induced diabetes by suppressing hepatic glucose production. Molecules. 2018;23(9):2338.

    Article  Google Scholar 

  33. Yongwang Y, Xu Z, Kangxiao G, Feng Z, Hongqi Y. Use of Chlorogenic acid against diabetes mellitus and its complications. J Immunol Res. 2020;2020:9680508. https://doi.org/10.1155/2020/9680508.

    Article  CAS  Google Scholar 

  34. Hsiang-Li W, Chien-Hung C, Sing-Jyun T, Ruey-Jen Y. Aspartate amininotransferase and alanine aminotransferase detection on paper-based analytical devices with InkJet printer-sprayed reagents. Micromachines (Basel). 2016;7(1):9.

    Article  Google Scholar 

  35. Matthias C, Christoph A, Beirnd H. Factors associated with elevated alanine aminotransferase in employees of a German Chemical Company: results of a large cross-sectional study. BMC Gastroenterol. 2021;21:25. https://doi.org/10.1186/s12876-021-01601-2.

    Article  CAS  Google Scholar 

  36. Ujjawal S, Deeksha P, Rajendra P. Alkaline phosphatase: an overview. Indian J Clin Biochem. 2014;29(3):269–78.

    Article  Google Scholar 

  37. Monem MM, Zena MA. Gamma glutamuyl transferase as a biomarker for acute coronary syndrome. Postgrad Med J. 2019;18(1):43–9.

    Google Scholar 

  38. Terry D, Hinds-Jr and David, E. S. Bilirubin, a cardiometabolic signaling molecule. Hypertensionaha. 2018;72:788–95.

    Article  Google Scholar 

  39. Bishwajit B, Tasnima S, Anindita M, Faria A, Tareen A, Ibrahimu AM, Nayla C, Abul K, Akhtar H, Gerd H, Tone KO. Serum lipid profile and its association with diabetes and prediabetes in a Rural Banglaeshi Population. Int J Environ Res Public Health. 2018;15(9):1944. https://doi.org/10.3390/ijerph15091944.

    Article  CAS  Google Scholar 

  40. Zewen L, Zhang R, Jun Z, Chia-Chen C, Eswar K, Tingyang Z, Li Z. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018;9:477. https://doi.org/10.3389/fphys.2018.00477.

  41. Braz J. Cocos nucifera (L.) (Arecaceae): a phytochemical and pharmacological review. Med Biol Res. 2015;48(11):953–64.

    Google Scholar 

  42. Magdalena G, Bilska-Wilkosz A, Małgorzata I, Marta H, Kinga K, Adrianna K, Grażyna C, Zofia R, Elżbieta LNBVCC. Alterations in the antioxidant enzyme activities in the neurodevelopmental rat model of schizophrenia induced by glutathione deficiency during early postnatal life. MDPI Antioxidants (Basel). 2020;9(6):538.

    Google Scholar 

  43. Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012;12(1):5–18.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Akuji MA, Chambers DJ. Hydrogen peroxide: more harm than good? Br J Anaesth. 2017;118(6):958–9.

    Article  CAS  PubMed  Google Scholar 

  45. Juan C, Bhagyesh B, Mahendra K. Interaction of ROS and RNS with GSH and GSH/GPx Systems. FASEB J. 2015;29(1):636–7.

    Google Scholar 

  46. Ondrej Z, Sylvie S, Jaromir G, Michal M, Vojtech A, Jaromir H, Libuse T, Jarmila K, Tomas E, Rene K. Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol Lett. 2012;4(6):1247–53.

    Article  Google Scholar 

  47. Jayasimha GB, Dwarakanath V, Chilka SBK. Streptozotocin –a diabetogenic agent in animal models. Hum J. 2015;3(1):254–7.

    Google Scholar 

  48. Jisieike-Onuigbo NN, Unuigbe EI, Kalu OA, Oguejiofor CO, Onuigbo PC. Prevalence of dyslipidemia among adult diabetic patients with overt diabetic nephropathy in Anambra state South-East Nigeria. Niger J Clin Pract. 2011;14(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  49. Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47. https://doi.org/10.1017/jns.2016.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ayepola OR, Brooks NL, Oguntibeju OO. Oxidative stress and diabetic complications: the role of antioxidant vitamins and flavonoids. In: Antioxidant-antidiabetic agents and human health; 2014. https://doi.org/10.5772/57029.

    Chapter  Google Scholar 

Download references

Funding

The manuscript was self-funded.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design, interpretation of the studies, and analysis of the data and review of the manuscript; BFA, AOA, ORA, AOO, and ABO conducted the experiments, wrote the manuscript, and approved for submission.

Corresponding author

Correspondence to B. O. Ajiboye.

Ethics declarations

Ethical approval

This study was approved by the FUOYE Faculty of Science Ethical Committee.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamisaye, F.A., Ayodele, O.A., Ajuwon, O.R. et al. In vivo antidiabetic and antioxidant activities of Prosopis africana fruit extracts in streptozotocin-induced diabetic Wistar rats. Nutrire 48, 29 (2023). https://doi.org/10.1186/s41110-023-00212-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-023-00212-z

Keywords

Navigation