Skip to main content
Log in

Resonance Light-Scattering Enhancement Effect of the Y(III)–PUFX–Eosin System and its Fluorescence Study

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Highly sensitive and rapid method for the determination of prulifloxacin (PUFX) has been developed on the basis of ion association reaction of PUFX, Y(III) and eosin Y (EY). In pH 6.5 BR buffer medium, PUFX reacts with Y(III) to form a 2:1 cationic chelate which further reacts with EY to form 2:1 ion-association complex. As a result, not only the spectra of absorption are changed, but quenching of fluorescence and significant enhancement of resonance Rayleigh scattering (RRS) is observed. Furthermore, a new RRS spectrum would appear, and the maximum RRS wavelength was located at about 375 nm. The fluorescence quenching (FQ) and enhanced RRS intensity were directly proportional to the PUFX concentration in the ranges of 1.5 – 7.6 μg mL–1 and 0.004 – 3.0 μg mL–1 with detection limits 8.5 ng mL–1 and 1.1 ng mL–1, respectively. The optimum conditions of RRS method and the effects of coexisting substances on the reaction were investigated. In addition the composition of ion-association complexes, the reaction mechanism, the energy transfer between absorption, fluorescence and RRS and reasons for RRS enhancement were discussed. The methods were applied to the determination of PUFX in pharmaceutical samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. T. Yoshida and S. Mitsuhashi, Antimicrob. Agents Chemother., 37, 793 – 800 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Y. Okuhama, K. Momota, and A. Morino, Arzneim. Forsch., 47, 276 – 284 (1997).

    Google Scholar 

  3. M. Nakashima, T. Uematsu, K. Kosuge, et al., J. Pharmacol., 34, 930 – 937 (1994).

    CAS  Google Scholar 

  4. R. Picollo, N. Brion, V. Gualano, et al., Arzneim. Forsch., 53 (2003) 201 – 205.

    CAS  Google Scholar 

  5. J. Wen, Z. Y. Zhu, Z. Y. Hong, et al., Chromatography, 66, 37 – 41 (2007).

    Article  CAS  Google Scholar 

  6. L. X. Guo, M. L. Qi, X. Jin, et al., J. Chromatogr. B, 832, 280 – 285 (2006).

    Article  CAS  Google Scholar 

  7. A. T. Luo, H. F. Liu, X. K.Wang, and H. Li, Memoirs, 3, 31 – 33 (2006).

    Google Scholar 

  8. Z. Yang, X.Wang,W. Qin, and H. Zhao, Anal. Chim. Acta, 623, 231 – 237 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. F. Yu, F. Chen, S. Zheng, and L. Chen, Anal. Lett., 41, 3124 – 3137 (2008).

    Article  CAS  Google Scholar 

  10. T. Wu, B. Fang, L. Chang, et al., Luminescence, 28, 894 – 899 (2013).

    Article  PubMed  CAS  Google Scholar 

  11. Z. Yang, X.Wang,W. Qin, and H. Zhao, Anal. Chim. Acta, 623, 231 – 237 (2008).

    Article  PubMed  CAS  Google Scholar 

  12. M. Cui, F. Yu, F. Chen, and L. Chen, Anal. Lett., 41, 2001 – 2012 (2008).

    Article  CAS  Google Scholar 

  13. X. L. Wang, A. Y. Li, H. C. Zhao, and L. P. Jin, J. Anal. Chem., 64, 75 – 81 (2009).

    CAS  Google Scholar 

  14. C. Z. Huang, K. A. Li, and S. Y. Tong, Anal. Chem., 68, 2259 – 2263 (1996).

    Article  PubMed  CAS  Google Scholar 

  15. C. Q. Ma, K. A. Li, and S. Y. Tong, Anal. Biochem., 239, 86 – 91 (1996).

    Article  PubMed  CAS  Google Scholar 

  16. S. P. Liu, H. Q. Luo, N. B. Li, and Z. F. Liu, Anal. Chem., 76, 3907 – 3914 (2001).

    Article  CAS  Google Scholar 

  17. S. P. Liu, Z. F. Liu, and H. Q. Luo, Anal. Chim. Acta., 12, 255 – 260 (2000).

    Article  Google Scholar 

  18. M. Oshima, N. Goto, J. P. Susanto, and S. Motomizu, Analyst, 121, 1085 – 1088 (1996).

    Article  CAS  Google Scholar 

  19. S. P. Liu, S. Chen, Z. F. Liu, et al., Anal. Chim. Acta, 535, 169 – 175 (2005).

    Article  CAS  Google Scholar 

  20. X. Q. Wei, Z. F. Liu, and S. P. Liu, Anal. Biochem., 346, 330 – 332 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. X. L. Hu, S. P. Liu, and N. B. Li, Anal. Bioanal. Chem. 376, 42 – 48 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. S. H. Fu, Z. F. Liu, S. P. Liu, et al., Anal. Chim. Acta, 599, 271 – 278 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. Z. Jiang, R. Cai, and H. Zhang, in: Analytical Chemistry of Rare Earths, 2nd ed., Science Publishing: Beijing (2000), pp. 21 – 30.

  24. N. EI-Enany, Il Farmaco, 59, 63 (2004).

    Article  CAS  Google Scholar 

  25. S. G. Stanton, R. Pecora, and B. S. Hudson, J. Chem. Phys., 75, 5615 – 5626 (1981).

    Article  CAS  Google Scholar 

  26. S. P. Liu and L. Kong, Anal. Sci., 19, 1055 – 1060 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. Chinese Macropaedia Biology (II), Chinese Macropaedia Press, Beijing (1991), p. 1374.

  28. X. L. Tang, Z. F. Liu, S. P. Liu, and X. L. Hu, Sci. Chin. Ser. B, 50 54 – 62 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaista Bano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, S., Mohd, A., Khan, A.A.P. et al. Resonance Light-Scattering Enhancement Effect of the Y(III)–PUFX–Eosin System and its Fluorescence Study. Pharm Chem J 52, 182–190 (2018). https://doi.org/10.1007/s11094-018-1787-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-018-1787-4

Keywords

Navigation