Skip to main content
Log in

Sites of Action of Subtoxic Doses of the Iodine-Containing X-Ray Contrast Medium Iopromide on the Kidney and the Search for Means of Preventing the Development of Nephropathy

  • DRUGS
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A controlled, randomized study using an experimental model of contrast (iopromide)-induced nephropathy (CIN) in normal mongrel rats showed that the combination of treatment by hydration with the nicotinamide adenine dinucleotide (NAD)-containing formulation Nadcin®, with cytoprotective and antiischemic actions, decreased the plasma creatinine and urea nitrogen levels 72 h after induction of CIN. Aclose correlational relationship (r = 0.78, p < 0.001) was found between the blood endothelin-1 (ET-1) level and O2 generation, while there was no relationship between hydrogen peroxide production and the ET-1 level (r = 0.13, p > 0.05) or between the ET-1 level and catalase activity (r = 0.41, p > 0.05). In contrast to monotherapy with hydration, inclusion of Nadcin normalized blood ET-1 and the blood ET-1/creatinine ratio, the blood and renal NAD/NADH and NADP/NADPH redox potentials, and had more marked actions on reversing the overproduction of free radicals and on the antioxidant defense system in the blood and renal tissue. It is suggested that ET-1, the ET-1/creatinine ratio, and the plasma redox potential can be used as early markers for increases in the risk of developing stable impairment of renal function on use of x-ray contract agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Karmazanovskii, Yu. A. Polyaev, A. L. Yudin, and N. L. Shimanovskii, Med. Viz., 1, 135 – 144 (2007).

    Google Scholar 

  2. N. L. Shimanovskii, Contrast Media [in Russian], GEOTAR-Media, Moscow (2009); Series: Specialist Medical Library: Radiodiagnosis.

  3. T. H. Au, A. Bruckner, S. M. Mohiuddin, and D. E. Hilleman, Am. Pharmacother., 48, 1332 – 1342 (2014).

    Article  Google Scholar 

  4. A. Bienholtz, B. Wilde, and A. Kribben, Clin. Kidney J., 8(4), 405 – 414 (2015).

    Article  Google Scholar 

  5. N. Gassanov, A. M. Nia, E. Caglayan, and F. Er, J. Am. Soc. Nephrol., 25, 216 – 224 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. N. Katsiki, V. G. Athyros, A. Karagiannis, and D. P. Mikhailidis, Angiology, 66(6), 508 – 513 (2015).

    Article  PubMed  Google Scholar 

  7. R. Anand, D. Harry, S. Holt, et al., Gut, 50, 111 – 117 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. N. Heyman, S. Rosen, and C. Rosenberg, Clin. J. Am. Soc. Nephrol., 3, 288 – 296 (2008).

    Article  PubMed  Google Scholar 

  9. S. M. Sancho-Martinez, J. M. Lopez-Nov, and V. Golovach, Atherosclerosis, 235(2), e162 (2014).

    Article  Google Scholar 

  10. F. Heunish, G. Von Einem, M. Alter, et al., Life Sci., 118, 440 – 445 (2014).

    Article  Google Scholar 

  11. V. C. Ikamaise, T. B. Ekanem, K. E. Obeten, and G. Udo-Affah, Global. J. Sci. Front. Res. Biol. Sci., 2, 5 – 10 (2015).

    Google Scholar 

  12. W. Muetzel and U. Speck, Am. J. Neuroradiol., 4, 350 – 352 (1983).

    CAS  PubMed  Google Scholar 

  13. M. D. Adams, M. S. Robbins, R. M. Hopkins, and G. B. Hoey, Investigative Radiol., 19(4), S124 (1984).

    Article  Google Scholar 

  14. C. F. Pinto, M. Watanabe, and M. F. Vattimo, J. Nephrol., 21, 783 – 788 (2008).

    CAS  PubMed  Google Scholar 

  15. N. A. Andriadze, G. V. Sukoyan, N. O. Otarishvili, et al., Ros. Med. Vestn., No. 2, 31 – 42 (2001).

  16. N. V. Karsanov, G. V. Sukoyan, A. V. Antelava, and N. A. Varazanashvili, Éksperim. Klin. Farmakol., 66(5), 17 – 21 (2003).

    CAS  Google Scholar 

  17. G. V. Sukoyan, N. A. Andriadze, E. I. Guchua, and N. V. Karsanov, Byul. Éksperim. Biol. Med., 139(1), 53 – 56 (2005).

    Google Scholar 

  18. S. K. Morcos, H. S. Thomsen, and J. A. Webb, Eur. Radiol., 9, 1602 – 1613 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. A. Papadimitriou, K. C. Silva, E. Peixoto, et al., Am. J. Renal. Physiol., 308, F209-F225 (2015).

    Article  CAS  Google Scholar 

  20. S. Quadri and H. M. Siragy, Am. J. Renal. Physiol., 307, F593-F600 (2014).

    Article  CAS  Google Scholar 

  21. R. K. Gupta and T. J. Bang, Seminars Int. Radiol., 27(4), 348 – 359 (2010).

    Article  CAS  Google Scholar 

  22. M. Maeder, M. Klein, T. Fehr, and H. Rickli, J. Am. Coll. Cardiol., 44, 1763 – 1771 (2004).

    Article  PubMed  Google Scholar 

  23. M. Heinrich and M. Uder, Rofo, 178(4), 378 – 384 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. G-S. Oh, H-J. Kim, A. Shen, et al., Biomed. Res. Intern., Article ID 4048390; http: //dx.doi.org/https://doi.org/10.1155/2016/4048390 (2016).

  25. O. H. Lowry, J. V. Passoneau, and M. K. Rock, J. Biol. Chem., 236(10), 2756 – 2759 (1961).

    CAS  PubMed  Google Scholar 

  26. O. H. Lowry and J. V. Passoneau, A Flexible System of Enzymatic Analysis, Academic Press, New York, London (1972).

    Google Scholar 

  27. M. R. Buhl, E. Kemp, and G. Kemp, Transplant Proc., 9(3), 1603 – 1606 (1977).

    CAS  PubMed  Google Scholar 

  28. O. H. Lowry, J. V. Passoneau, and M. K. Rock, J. Biol. Chem., 236(10), 2756 – 2759. (1961).

    CAS  PubMed  Google Scholar 

  29. O. H. Lowry and J. V. Passoneau, A Flexible System of Enzymatic Analysis, Academic Press, New York, London (1972).

    Google Scholar 

  30. D. Rothwell and M. James, Urological Res., 9(2), 75 – 78 (1981).

    Article  CAS  Google Scholar 

  31. G. V. Sukoyan and I. K. Kavadze, Byul. Éksperim. Biol. Med., 141(9), 297 – 300 (2008).

    Google Scholar 

  32. W. Ying, Scientifica (Cairo); doi: https://doi.org/10.1155/2013/691251 (2013).

  33. L. A. Bokeriya, V. E. Malikov, M. A. Arzumanyan, et al., Klin. Fiziol. Krovoobrashch., 1, 39 – 44 (2008).

    Google Scholar 

  34. M. Rogava, T. Bochorishvili, K. Kapanadze, and E. Berberashvili, Cardiol. Int. Med., 3 – 4, 33 – 37 (2010).

    Google Scholar 

  35. M. Rogava, T. Bochorishvili, V. E. Malikov, et al., Cardiol. Int. Med., 3 – 4, 18 – 23 (2007).

    Google Scholar 

  36. G. V. Sukoyan, A. V. Antelava, I. K. Kavadze, et al., Éksperim. Klin. Farmakol., 67(2), 19 – 23 (2003).

    Google Scholar 

  37. N. V. Gongadze, T. D. Kezeli, G. V. Sukoyan, et al., Pharmacol. Pharmacy, 7, 81 – 88 (2016).

    Article  Google Scholar 

  38. N. Braidy, G. J. Guillemin, H. Mansour, et al., PLoS One, 6(e19194), 1 – 17 (2011).

    Google Scholar 

  39. Y. Ido, Antioxidants & Redox Signaling, 9, No. 7, 931 – 942 (2007).

    Article  CAS  Google Scholar 

  40. H-C. Lee, J-G. Chang, H-W. Yen, et al., J. Nephrol., 24(3), 376 – 380 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 51, No. 9, pp. 49 – 54, September, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukoyan, G.V., Kezeli, T.D., Dolidze, N.M. et al. Sites of Action of Subtoxic Doses of the Iodine-Containing X-Ray Contrast Medium Iopromide on the Kidney and the Search for Means of Preventing the Development of Nephropathy. Pharm Chem J 51, 818–823 (2017). https://doi.org/10.1007/s11094-017-1699-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-017-1699-8

Keywords

Navigation