Skip to main content
Log in

Effects of glycosaminoglycans in vascular events

  • Molecular-Biological Problems of Drug Design and Mechanism of Drug Action
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In acute cardiovascular lesions, functional recovery of the myocardium occurs when adequate reperfusion of the infarct-related artery and an adequate level of microcirculation and tissue flow in the lesioned area are achieved. The major regulators of these effects are the glycosaminoglycan component of the endothelial cellular coating (glycocalyx, extracellular matrix, interstitial material) and its catabolic enzymes and their inhibitors. The causes and consequences of glycocalyx abnormalities in vascular lesions are considered, along with the potential for glycocalyx reconstruction. The glycoprotein environment of cells has been found to regulate the biomechanical properties of vessels, tissue assembly and repair; it was also able to bind low-and high-molecular-weight ligands. Hydration of glycosaminoglycans determines the development of tissue edema and mediates the anticoagulant activity of the extracellular matrix. Binding of chemokines, growth factors, other proteins, and lipoproteins to glycosaminoglycans has been noted in relation to execution of their regulatory functions. The existence of special structural biding sites for such reactants has been demonstrated, along with a relationship between the biological effects induced by glycosaminoglycans and their molecular weights. The involvement of glycosaminoglycans in the pathophysiological processes occurring in vascular lesions is reviewed, as are promising approaches to regulating the state of the pericellular coatings via the precise and effective control of the level of glycosylation of biological substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Maes, F. Van de Werf, J. Nuyts, et al., Circulation, 92, 2072–2078 (1995).

    PubMed  CAS  Google Scholar 

  2. C. M. Gibson, C. P. Cannon, S. A. Murphy, et al., Circulation, 101, 125–130 (2000).

    PubMed  CAS  Google Scholar 

  3. J. K. French, K. Ramanathan, J. T. Stewart, et al., Amer. Heart J., 145, 508–514 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. M. T. Roe, E. M. Ohman, A. C. P. Maas, et al., J. Amer. Coll. Cardiol., 37, 9–18 (2001).

    Article  CAS  Google Scholar 

  5. E. J. Topol, Heart, 83, 122–126 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. H. C. Herrmann, Amer. Heart J., 151, S30–S39 (2006).

    Article  PubMed  Google Scholar 

  7. S. Yusuf, Amer. J. Cardiol., 60, 11A–17A (1987).

    Article  PubMed  CAS  Google Scholar 

  8. L. Galiuto, A. N. DeMaria, U. del Balzo, et al., Circulation, 102, 3111–3116 (2000).

    PubMed  CAS  Google Scholar 

  9. T. N. Wight and M. J. Merrilees, Circ. Res., 94, 1158–1167 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. V. H. Huxley and D. A. Williams, Amer. J. Physiol. Heart Circ. Physiol., 278, H1177–H1185 (2000).

    CAS  Google Scholar 

  11. B. M. Van den Berg, H. Vink, and J. A. Spaan, Circ. Res., 92, 592–594 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. M.-C. Bourin and U. Lindahl, Biochem. J., 289, 313–330 (1993).

    PubMed  CAS  Google Scholar 

  13. G. Siegel, “Connective tissue: more than just a matrix for cells,” in: Comprehensive Human Physiology, R. Greger and U. Windhorst (Eds.), Springer-Verlag, Berlin-Heidelberg, (1996), Vol. 1., pp. 173–224.

    Google Scholar 

  14. A. Rapraeger, M. Jalkanen, E. Endo, et al., J. Biol. Chem., 260, 11046–11052 (1985).

    PubMed  CAS  Google Scholar 

  15. K. J. Williams and I. V. Fuki, Curr. Opin. Lipidol., 8, 253–262 (1997).

    Article  PubMed  CAS  Google Scholar 

  16. S. Yla-Herttuala, H. Sumuvuori, K. Karkola, et al., Lab. Invest., 54, 402–407 (1986).

    PubMed  CAS  Google Scholar 

  17. F. D. Kolodgie, A. P. Burke, A. Farb, et al., Arterioscler. Thromb. Vasc. Biol., 22, 1642–1648 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. S. K. Shinjo, N. E. V. B. Prates, S. M. Oba, et al., Atherosclerosis, 143, 363–368 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. D. Mehta and A. B. Malik, Physiol. Rev., 86, 279–367 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. R. D. Kenagy, J. W. Fischer, S. Lara, et al., J. Histochem. Cytochem., 53, 131–140 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. I. M. Chung, H. K. Gold, S. M. Schwartz, et al., J. Amer. Coll. Cardiol., 40, 2072–2081 (2002).

    Article  CAS  Google Scholar 

  22. A. Farb, F. D. Kolodgie, J. Y. Hwang, et al., Circulation, 110, 940–947 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. A. W. Mulivor and H. H. Lipowsky, Amer. J. Physiol. Heart Circ. Physiol., 286, H1672–H1680 (2004).

    Article  CAS  Google Scholar 

  24. S. H. Platts, J. Linden, and B. R. Duling, Amer. J. Physiol. Heart Circ. Physiol., 284, H2360–H2367 (2003).

    CAS  Google Scholar 

  25. T. D. Camenisch and J. A. McDonald, Amer. J. Respir. Cell Mol. Biol., 23, 431–433 (2000).

    CAS  Google Scholar 

  26. R. Stern, Glycobiology, 13, 105R–115R (2003).

    Article  PubMed  CAS  Google Scholar 

  27. E. Czarnowska and E. Karwatowska-Prokopczuk, Basic Res. Cardiol., 90, 357–364 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. A. Beresewicz, E. Czarnowska, and M. Maczewski, Molec. Cell. Biochem., 186, 87–97 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. E. M. Tararak and G. K. Sukhova, Angiol. Vasc. Surgery, 5, 204–217 (1999).

    Google Scholar 

  30. J. A. Florian, J. R. Kosky, K. Ainslie, et al., Circ. Res., 93, 136–142 (2003).

    Article  CAS  Google Scholar 

  31. S. Mochizuki, H. Vink, O. Hiramatsu, et al., Amer. J. Physiol. Heart Circ. Physiol., 285, H722–H726 (2003).

    CAS  Google Scholar 

  32. R. O. Dull, R. Dinavahi, L. Schwartz, et al., Amer. J. Physiol. Lung Cell. Mol. Physiol., 285, L986–995 (2003).

    CAS  Google Scholar 

  33. H. Vink, A. A. Constantinescu, and J. A. E. Spaan, Circulation, 101, 1500–1502 (2000).

    PubMed  CAS  Google Scholar 

  34. A. A. Constantinescu, H. Vink, and J. A. E. Spaan, Arterioscler. Thromb. Vasc. Biol., 23, 1541–1547 (2003).

    Article  PubMed  CAS  Google Scholar 

  35. C. B. Underhill and B. P. Toole, J. Cell Biol., 82, 475–484 (1979).

    Article  PubMed  CAS  Google Scholar 

  36. S. P. Evanko, J. C. Angello, and T. N. Wight, Arterioscler. Thromb. Vasc. Biol., 19, 1004–1013 (1999).

    PubMed  CAS  Google Scholar 

  37. T. Tomaru, Y. Fujimori, T. Morita, et al., Jpn. Circ. J., 60, 981–992 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. Y. Banz, O. M. Hess, S. C. Robson, et al., Eur. Heart J., 26, 2334–2343 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. C. B. S. Henry and B. R. Duling, Amer. J. Physiol. Heart Circ. Physiol., 277, H508–514 (1999).

    CAS  Google Scholar 

  40. B. P. Toole, J. Clin. Invest., 106, 335–336 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. M. I. Tammi, A. J. Day, and E. A. Turley, J. Biol. Chem., 277, 4581–4584 (2002).

    Article  PubMed  CAS  Google Scholar 

  42. M. McGee and W. D. Wagner, Arterioscler. Thromb. Vasc. Biol., 23, 1921–1927 (2003).

    Article  PubMed  CAS  Google Scholar 

  43. E. Di Cera, Arterioscler. Thromb. Vasc. Biol., 23, 1713–1714 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. J. I. Weitz, Circulation, 110, I19–26 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. G. S. V. Kuschert, F. Coulin, C. A. Power, et al., Biochemistry, 38, 12959–12968 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. N. N. Nissen, R. Shankar, R. L. Gamelli, et al., Biochem. J., 338, 637–642 (1999).

    Article  PubMed  CAS  Google Scholar 

  47. G. Siegel, M. Malmsten, D. Klussendorf, and W. Leonhardt, Atherosclerosis, 144, 59–67 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. M. Kaplan and M. Aviram, Atherosclerosis, 149, 5–17 (2000).

    Article  PubMed  CAS  Google Scholar 

  49. M. Kaplan, K. J. Williams, H. Mandel, and M. Aviram, Arterioscler. Thromb. Vasc. Biol., 18, 542–553 (1998).

    PubMed  CAS  Google Scholar 

  50. J. M. Edelberg, M. Weissler, and S. V. Pizzo, Biochem. J., 276, 785–791 (1991).

    PubMed  CAS  Google Scholar 

  51. G. David, A. Danneels, J. Duerr, et al., Atherosclerosis, 118, S57–67 (1995).

    Article  PubMed  CAS  Google Scholar 

  52. E. M. Munoz and R. J. Linhardt, Arterioscler. Thromb. Vasc. Biol., 24, 1549–1557 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. G. G. Nenci, Pathophysiol. Haemost. Thromb., 32, 303–307 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. P. Bianchini, Semin. Thromb. Hemost., 15, 365–369 (1989).

    Article  PubMed  CAS  Google Scholar 

  55. B. P. Toole, T. N. Wight, and M. I. Tammi, J. Biol. Chem., 277, 4593–4596 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. N. R. Madamanchi, Z. S. Hakim, and M. S. Runge, J. Thromb. Haemost., 3, 254–267 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. K. Skalen, M. Gustafsson, E. K. Rydberg, et al., Nature, 417, 750–754 (2002).

    Article  PubMed  CAS  Google Scholar 

  58. S. R. Srinivasan, J. H. Xu, P. Vijayagopal, et al., Biochim. Biophys. Acta, 1168, 158–166 (1993).

    PubMed  CAS  Google Scholar 

  59. A. Chajara, M. Raoudi, B. Delpech, and H. Levesque, Atherosclerosis, 171, 15–19 (2003).

    Article  PubMed  CAS  Google Scholar 

  60. D. O. Clegg, D. J. Reda, C. L. Harris, et al., N. Engl. J. Med., 354, 795–808 (2006).

    Article  PubMed  CAS  Google Scholar 

  61. D. T. Felson, N. Engl. J. Med., 354, 841–848 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. R. D. Kenagy, J. W. Fischer, M. G. Davies, et al., Arterioscler. Thromb. Vasc. Biol., 22, 400–404 (2002).

    Article  PubMed  CAS  Google Scholar 

  63. J. Filmus, W. Shi, Z. M. Wong, and M. J. Wong, Biochem. J., 311, 561–565 (1995).

    PubMed  CAS  Google Scholar 

  64. J. A. Cramer, L. C. Bailey, C. A. Bailey, and R. T. Miller, Biochim. Biophys. Acta, 1200, 315–321 (1994).

    PubMed  CAS  Google Scholar 

  65. K. Takagaki, T. Nakamura, J. Izumi, et al., Biochemistry, 33, 6503–6507 (1994).

    Article  PubMed  CAS  Google Scholar 

  66. A. B. Csoka, G. I. Frost, T. Wong, and R. Stern, FEBS Lett., 417, 307–310 (1997).

    Article  PubMed  CAS  Google Scholar 

  67. A. B. Csoka, G. I. Frost, and R. Stern, Matrix Biol., 20, 499–508 (2001).

    Article  PubMed  CAS  Google Scholar 

  68. P. Primakoff, H. Hyatt, and D. G. Myles, J. Cell. Biol., 101, 2239–2244 (1985).

    Article  PubMed  CAS  Google Scholar 

  69. Y. Lin, K. Mahan, W. F. Lathrop, et al., J. Cell. Biol., 125, 1157–1163 (1994).

    Article  PubMed  CAS  Google Scholar 

  70. Z. Markovic-Housley, G. Miglierini, L. Soldatova, et al., Structure Fold Des., 8, 1025–1035 (2000).

    Article  PubMed  CAS  Google Scholar 

  71. G. L. Frost, T. Csoka, and R. Stern, Trends Glycosci. Glycotechnol., 8, 419–434, (1996).

    CAS  Google Scholar 

  72. I. Muckenschnabel, G. Bernhardt, T. Spruss, et al., Cancer Lett., 131, 13–20 (1998).

    Article  PubMed  CAS  Google Scholar 

  73. K. Meyer, in: The Enzymes, P. D. Boyer (Ed.). Vol. 5, Hyaluronidases. Hydrolysis (Sulfate Esters, Carboxyl Esters, Glycosides), Hydration, Academic Press, New York, (1971), pp. 307–320.

    Google Scholar 

  74. H. Saitoh, K. Takagaki, M. Majima, et al., J. Biol. Chem., 270, 3741–3747 (1995).

    Article  PubMed  CAS  Google Scholar 

  75. K. Mio, O. Carrette, H. I. Maibach, and R. Stern, J. Biol. Chem., 275, 32413–32421 (2000).

    Article  PubMed  CAS  Google Scholar 

  76. K. Mio and R. Stern, Matrix Biol., 21, 31–37 (2002).

    Article  PubMed  CAS  Google Scholar 

  77. A. V. Maksimenko, M. L. Petrova, E. G. Tischenko, and Y. V. Schechilina, Eur. J. Pharm. Biopharm., 51, 33–38 (2001).

    Article  PubMed  CAS  Google Scholar 

  78. A. V. Maksimenko, O. Yu. Konovalova, V. R. Berdichevdskii, et al., Byull. Éksperim. Biol. Med., 102, 567–569 (1986).

    CAS  Google Scholar 

  79. O. G. arkhipova, V. V. Yaglov, A. V. Maksimenko, et al., Byull. Éksperim. Biol. Med., 103, 221–223 (1987).

    Article  CAS  Google Scholar 

  80. A. V. Maksimenko, Yu. V. Shchechilina, and E. G. Tishchenko, Biokhimiya, 66, 563–572 (2001).

    Google Scholar 

  81. A. V. Maksimenko, Yu. V. Shchechilina, and E. G. Tishchenko, Biokhimiya, 68, 1055–1062 (2003).

    Google Scholar 

  82. M. L. Yarmush and S. Banta, Ann. Rev. Biomed. Eng., 5, 349–381 (2003).

    Article  CAS  Google Scholar 

  83. A. V. Maksimenko, Med. Sci. Monit., 8, RA13–2RA21 (2002).

    PubMed  Google Scholar 

  84. M. A. Brouwer, N. Clappers, and F. W. Verheugt, Heart, 90, 581–588 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 42, No. 10, pp. 3–13, October, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksimenko, A.V. Effects of glycosaminoglycans in vascular events. Pharm Chem J 42, 553–563 (2008). https://doi.org/10.1007/s11094-009-0188-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-009-0188-0

Keywords

Navigation