Skip to main content
Log in

Dielectric-Boosted Gliding Arc Discharge for N2 Fixation into NOx

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma nitrogen fixation technology is of great significance in solving the problem of nitrogen fertilizer resource shortage, saving energy and reducing carbon emission, promoting sustainable development of agriculture and promoting resource recycling. To enhance the efficiency and treatment capacity of the two-dimensional, blade-type gliding arc nitrogen fixation reaction, a dielectric-boosted gliding arc discharge reactor with a 50-mm-diameter quartz dielectric (DBGADΦ50) was used to conduct N2 fixation into NOx. The impact of reactor parameters and gas parameters on the nitrogen fixation reaction was systematically investigated in this study. The findings revealed that the DBGADΦ50 significantly improved the nitrogen fixation effect. At a specific input energy of 2.7 kJ/L, the concentration of NOx generated by the dielectric-boosted gliding arc air discharge was 1.12 times that of the conventional gliding arc discharge (GAD). By utilizing the DBGADΦ50 reactor, the energy efficiency of 6.83 g/kW h was achieved at a gas flow rate of 5.6 L/min. Appropriately increasing O2 concentration favors the production of NOx. In the DBGADΦ50, the NOx concentration was 1.33 times higher than that in the air atmosphere when the added O2 volume fraction reached 30%. Performance can be further enhanced by adding TiO2 catalyst particles to the surface of the quartz dielectric to form a catalyst layer approximately 5 mm thick. At an O2 concentration of 30%, the DBGADΦ50 reactor loaded with TiO2 increased NOx concentration by 26% and energy efficiency by 49%, respectively, resulting in an efficiency of 14.9 g/kW h compared to the case without catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Liu J, Cai H, Chen S et al (2023) A review on soil nitrogen sensing technologies: challenges, progress and perspectives. Agriculture 13(4):743

    Article  CAS  Google Scholar 

  2. Cherkasov N, Ibhadon AO, Fitzpatrick P (2015) A review of the existing and alternative methods for greener nitrogen fixation. Chem Eng Process 90:24–33

    Article  CAS  Google Scholar 

  3. Chen JG, Crooks RM, Seefeldt LC, Bren KL, Bullock RM, Darensbourg MY, Holland PL, Hoffman B, Janik MJ, Jones AK, Kanatzidis MG (2018) Beyond fossil fuel–driven nitrogen transformations. Science 360(6391):eaar6611

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257(17):2551–2564

    Article  CAS  Google Scholar 

  5. Xue X, Chen R, Yan C et al (2019) Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Res 12(6):1229–1249

    Article  CAS  Google Scholar 

  6. McEnaney JM, Singh AR, Schwalbe JA, Kibsgaard J, Lin JC, Cargnello M, Jaramillo TF, Nørskov JK (2017) Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ Sci 10(7):1621–1630

    Article  CAS  Google Scholar 

  7. Gangoli SP, Gutsol AF, Fridman AA (2010) A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. design and diagnostics. Plasma Sources Sci Technol 19(6):065003

    Article  Google Scholar 

  8. Fridman A, Nester S, Kennedy LA et al (1999) Gliding arc gas discharge. Prog Energy Combust Sci 25(2):211–231

    Article  CAS  Google Scholar 

  9. Tang X, Wang J, Yi H et al (2018) Nitrogen fixation and NO conversion using dielectric barrier discharge reactor: identification and evolution of products. Plasma Chem Plasma Process 38(3):485–501

    Article  CAS  Google Scholar 

  10. Wu S, Thapa B, Rivera C et al (2021) Nitrate and nitrite fertilizer production from air and water by continuous flow liquid-phase plasma discharge. J Environ Chem Eng 9(2):104761

    Article  CAS  Google Scholar 

  11. Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: co-generation of syngas and carbon nanomaterials. Int J Hydrogen Energy 39(18):9658–9669

    Article  CAS  Google Scholar 

  12. Zhu J, Gao J, Ehn A et al (2017) Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure. Phys Plasmas 24(1):013514

    Article  Google Scholar 

  13. Liu G, Xia Y, Shang K et al (2024) Investigation of electric field distribution on dielectric exposed to DC-pulsed He plasma jet with shielding gas. J Phys D Appl Phys 57(2):025201

    Article  Google Scholar 

  14. Chen H, Wu A, Mathieu S et al (2021) Highly efficient nitrogen fixation enabled by an atmospheric pressure rotating gliding arc. Plasma Processes Polym 18(7):2000200

    Article  CAS  Google Scholar 

  15. Majeed M, Iqbal M, Altin M et al (2024) Effect of thermal gas quenching on NOx production by atmospheric pressure rotating arc plasma: a pathway towards eco-friendly fertilizer. Chem Eng J 485:149727

    Article  CAS  Google Scholar 

  16. Tsonev I, O’Modhrain C, Bogaerts A et al (2023) Nitrogen fixation by an arc plasma at elevated pressure to increase the energy efficiency and production rate of NOx. ACS Sustain Chem Eng, Am Chem Soc 11(5):1888–1897

    Article  CAS  Google Scholar 

  17. Jardali F, Alphen SV, Creel J et al (2021) NOx production in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation. Green Chem, Royal Soc Chem 23(4):1748–1757

    Article  CAS  Google Scholar 

  18. Tu X, Gallon HJ, Whitehead JC (2011) Dynamic behavior of an atmospheric argon gliding arc plasma. IEEE Trans Plasma Sci 39(11):2900–2901

    Article  CAS  Google Scholar 

  19. Vervloessem E, Aghaei M, Jardali F et al (2020) Plasma-based N2 fixation into NOx : insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron. ACS Sustain Chem Eng 8(26):9711–9720

    Article  CAS  Google Scholar 

  20. Patil BS, Rovira Palau J, Hessel V et al (2016) Plasma nitrogen oxides synthesis in a milli-scale gliding arc reactor: investigating the electrical and process parameters. Plasma Chem Plasma Process 36(1):241–257

    Article  CAS  Google Scholar 

  21. Patil BS, Peeters FJJ, Van Rooij GJ et al (2018) Plasma assisted nitrogen oxide production from air: using pulsed powered gliding arc reactor for a containerized plant. AIChE J 64(2):526–537

    Article  CAS  Google Scholar 

  22. Malik MA, Jiang C, Heller R et al (2016) Ozone-free nitric oxide production using an atmospheric pressure surface discharge–A way to minimize nitrogen dioxide co-production. Chem Eng J 283:631–638

    Article  CAS  Google Scholar 

  23. Meng X, Lu N, Cheng S et al (2023) Experimental study on physical characteristics of dielectric-boosted gliding arc discharge. J Phys D Appl Phys 56(45):455203

    Article  Google Scholar 

  24. Taylan O, Berberoglu H (2014) Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration. Plasma Sources Sci and Technol IOP Publish 24(1):015006

    Article  Google Scholar 

  25. Paulussen S, Verheyde B, Tu X et al (2010) Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges. Plasma Sources Sci Technol 19(3):034015

    Article  Google Scholar 

  26. Abdelaziz AA, Teramoto Y, Nozaki T et al (2023) Toward reducing the energy cost of NOx formation in a spark discharge reactor through pinpointing its mechanism. ACS Sustain Chem Eng Am Chem Soc 11(10):4106–4118

    Article  CAS  Google Scholar 

  27. Shkurenkov I, Burnette D, Lempert WR et al (2014) Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air*. Plasma Sources Sci Technol IOP Publish 23(6):065003

    Article  CAS  Google Scholar 

  28. Li J, Yao S, Wu Z (2020) NOx production in plasma reactors by pulsed spark discharges. J Phys D: Appl Phys IOP Publish 53(38):385201

    Article  CAS  Google Scholar 

  29. Zhang S, Zong L, Zeng X et al (2022) Sustainable nitrogen fixation with nanosecond pulsed spark discharges: insights into free-radical-chain reactions. Green Chem 24(4):1534–1544

    Article  CAS  Google Scholar 

  30. Komuro A, Yoshino A, Wei Z et al (2023) Effects of oxygen concentration on streamer propagation and ozone production in a single-filament streamer discharge at atmospheric pressure. J Phys D Appl Phys 56(18):185201

    Article  Google Scholar 

  31. Liu Y, Wang C-W, Xu X-F et al (2022) Synergistic effect of Co–Ni bimetal on plasma catalytic ammonia synthesis. Plasma Chem Plasma Process 42(2):267–282

    Article  CAS  Google Scholar 

  32. Liu Q-Y, Wang H-D, Tang R et al (2021) Rutile TiO2 nanoparticles with oxygen vacancy for photocatalytic nitrogen fixation. ACS Appl Nano Mater Am Chem Soc 4(9):8674–8679

    Article  CAS  Google Scholar 

  33. Comer BM, Medford AJ (2018) Analysis of photocatalytic nitrogen fixation on rutile TiO2(110). ACS Sustain Chem Eng Am Chem Soc 6(4):4648–4660

    Article  CAS  Google Scholar 

  34. Kim HH, Tsunoda K, Katsura S et al (1999) A novel plasma reactor for NOx control using photocatalyst and hydrogen peroxide injection. IEEE Trans Ind Appl 35(6):1306–1310

    Article  CAS  Google Scholar 

Download references

Funding

The National Nature Science Foundation of China (No. 12275042) and the Fundamental Research Funds for the Central Universities (No. DUT20JC20).

Author information

Authors and Affiliations

Authors

Contributions

Meng Xiangyi and Lu Na wrote the main manuscript text. The experiment in this paper was carried out with the support of Lu Na, Jiang Nan and Shang Kefeng. All authors reviewed the manuscript.

Corresponding author

Correspondence to Na Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Lu, N., Shang, K. et al. Dielectric-Boosted Gliding Arc Discharge for N2 Fixation into NOx. Plasma Chem Plasma Process (2024). https://doi.org/10.1007/s11090-024-10474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11090-024-10474-8

Keywords

Navigation