Skip to main content
Log in

Fast Cross-scale Preparation of Water-repellent Hierarchical Surface via Atmospheric air Plasma for Water-in-oil Emulsion Separation

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Normally, atmospheric air plasma is usually utilized to hydrophilize the substrate surface. In this paper, a facile and fast method is reported to prepare hierarchical superhydrophobic surface via atmospheric air dielectric barrier discharge (DBD) with sealed discharge zone. Siloxane monomers along with silica nanoparticles were used to construct micro-scale hierarchical morphology in gas phase. It is verified that the water repellency of sample could be regulated through adjusting volume and air humidity of discharge zone. The generated reactive oxygen species induced polymerization of long-chain alkyl silane and also caused the grafting of polar groups on substrate surface. Within 5 min, the long-chain alkyl silane coating could rapidly wrap silica nanoparticles layer-by-layer to form microspheres and hence the micro-scale hierarchical morphology. The discharge zone with appropriate sealing volume could balance the grafting amount of polar and nonpolar groups to optimize surface hydrophobicity. After repeating the plasma treatment three times, the sample possessed superhydrophobicity and excellent performance in water-in-oil emulsion separation. The study may offer an environment-friendly method to prepare water-repellent materials for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Ray SS, Dangayach R, Kwon YN (2020) Chem Eng J 405:126702

    Google Scholar 

  2. Ahuja D, Dhiman S, Rattan G, Monga S, Singhal S, Kaushik A (2021) J Environ Chem Eng 9:105063

    Article  CAS  Google Scholar 

  3. Wei J, Pei N, Wang Y, Wang X, Wang Y, Xu N, Wei Y (2022) Sep Purif Technol 292:121002

    Article  CAS  Google Scholar 

  4. Chen CH, Cheng IC, Chen JZ (2022) Surf Interfaces 30:101901

    Article  CAS  Google Scholar 

  5. Liu S, Zhou H, Wang H, Yang W, Shao H, Fu S, Zhao Y, Liu D, Feng Z, Lin T (2017) Small 12:1701891

    Article  Google Scholar 

  6. Ribeiro AC, Soares BG, Furtado JGM, Silva AA, Couto NSSE (2022) Prog Org Coat 168:106867

    Article  CAS  Google Scholar 

  7. Liu S, Zhou H, Wang H, Zhan Y, Shao H, Xu Z, Feng Z, Liu D (2017) Adv Mater Interfaces 4:1700027

    Article  Google Scholar 

  8. Zhu W, Zhao J, Wang X, Liu X, Yu J, Ding B (2019) J Colloid Interf Sci 556:541–548

    Article  CAS  Google Scholar 

  9. Zhang HH, Liu YW, Bian H, Zhang Y, Yang ZN, Zhang Z, Chen Y (2022) J Alloy Compd 911:165058

    Article  CAS  Google Scholar 

  10. Wang T, Guo Q, Zhang TC, Zhang Y, Yuan S (2022) Prog Org Coat 170:106999

    Article  CAS  Google Scholar 

  11. Wang Y, Yin D, Guo Q, Huang J (2022) Ind Crop Prod 182:114868

    Article  CAS  Google Scholar 

  12. Xu L, Wang W, Zhang L, Wang D, Zhang A (2022) ACS Appl Mater Interfaces 14:21623–21635

    Article  CAS  PubMed  Google Scholar 

  13. Ma Y, Zhang J, Zhu G, Gong X, Wu M (2022) Mater Des 221:110897

    Article  CAS  Google Scholar 

  14. Ghamarpoor R, Jamshidi M (2022) Sep Purif Technol 291:120854

    Article  CAS  Google Scholar 

  15. Mao X, Zhao Z, Yang D, Qiao C, Tan J, Liu Q, Tang T, Zhang H, Zeng H (2022) Sep Purif Technol 285:120382

    Article  CAS  Google Scholar 

  16. Chen X, Gong Y, Suo X, Huang J, Liu Y, Li H (2015) Appl Surf Sci 356:639–644

    Article  CAS  Google Scholar 

  17. Yao X, Hou X, Qi G, Zhang R (2022) J Environ Chem Eng 10:107470

    Article  CAS  Google Scholar 

  18. Xu L, Yang L, Yang S, Xu Z, Lin G, Shi J, Zhang R, Yu J, Ge D, Guo Y (2021) ACS Appl Mater Interfaces 13:6758–6766

    Article  CAS  PubMed  Google Scholar 

  19. Manderfeld E, Kleinberg MN, Thamaraiselvan C, Koschitzki F, Gnutt P, Plumere N, Arnusch CJ, Rosenhahn A (2021) Appl Surf Sci 569:150853

    Article  CAS  Google Scholar 

  20. Jiang Y, Zhang Y, Gao C, An Q, Xiao Z, Zhai S (2022) Sep Purif Technol 282:120138

    Article  CAS  Google Scholar 

  21. Montes L, Román JM, García-Casas X, Castillo-Seoane J, Sánchez-Valencia JR, Barranco Á, López-Santos C, Borrás A (2021) Adv Mater Interfaces 9:2100767

    Article  Google Scholar 

  22. Ellinas K, Pujari SP, Dragatogiannis DA, Charitidis CA, Tserepi A, Zuilhof H, Gogolides E (2014) ACS Appl Mater Inter 6:6510–6524

    Article  CAS  Google Scholar 

  23. Saraf R, Lee HJ, Michielsen S, Owens J, Willis C, Stone C, Wilusz E (2011) J Mater Sci 46:5751–5760

    Article  CAS  Google Scholar 

  24. Dimitrakellis P, Gogolides E (2018) Adv Colloid Interfac 254:1–21

    Article  CAS  Google Scholar 

  25. Yang X, Liu S, Zhao Z, He Z, Lin T, Zhao Y, Li G, Qu J, Huang L, Peng X, Liu D (2021) Sep Purif Technol 255:117672

    Article  CAS  Google Scholar 

  26. Xu Q, Wang H, Liang J, Zhang Y, Yang D (2023) Vacuum 207:111688

    Article  CAS  Google Scholar 

  27. Zhu X, Li F, Guan X, Xu J, Cui X, Huang J, Liu F, Fang Z (2022) Eur Polym J 181:111656

    Article  CAS  Google Scholar 

  28. Zakeri Z, Salehi R, Mahkam M, Siahpoush V, Rahbarghazi R, Sokullu E, Abbasi F (2023) J Phys Chem Solids 178:111311

    Article  CAS  Google Scholar 

  29. Gulec HA, Topacli A, Topacli C, Albayrak N, Mutlu M (2013) J Membr Sci 350:310–321

    Article  Google Scholar 

  30. Wang H, Xue Y, Ding J, Feng L, Wang X, Lin T (2011) Angew Chem Int Edit 123:11635–11638

    Article  Google Scholar 

  31. Yim JH, Rodriguez-Santiago V, Williams AA, Gougousi T, Pappas DD, Hirvonen JK (2013) Surf Coat Technol 234:21–32

    Article  CAS  Google Scholar 

  32. Yan L, Stucki JW (1999) Langmuir 15:4648–4657

    Article  CAS  Google Scholar 

  33. Caschera D, Mezzi A, Cerri L, Caro TD, Riccucci C, Ingo GM, Padeletti G, Biasiucci M, Gigli G, Cortese B (2014) Cellulose 21:741–756

    Article  CAS  Google Scholar 

  34. Wang X, Xu S, Tan Y, Du J, Wang J (2016) Carbohydr Polym 140:188–194

    Article  CAS  PubMed  Google Scholar 

  35. Yuan D, Tang S, Qi J, Li N, Gu J, Huang H (2017) Vacuum 143:87–94

    Article  CAS  Google Scholar 

Download references

Funding

Funding supports of this work from National Natural Science Foundation of China (12202299), Natural Science Foundation of Jiangsu Province (BK20210738), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Author contributionsXiujin Li: Visualization, Investigation, Formal analysis.Shuai Liu: Validation, Software, Writing - Original Draft, Writing - Review & Editing, Methodology, Conceptualization, Supervision, Funding acquisition.Deqi Liu: Conceptualization, Methodology.Ming Lei: Validation, Formal analysis, Visualization.

Corresponding authors

Correspondence to Shuai Liu or Deqi Liu.

Ethics declarations

Ethical Approval

This declaration is not applicable.

Competing Interests

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11090_2024_10463_MOESM1_ESM.docx

Supplementary Material 1. Details on images of AADBD treatment system, W/O emulsion separation system and water droplets and oil droplets on treated filter papers, FTIR and XPS survey spectra of treated filter papers, SEM images of treated sample, W/O emulsion separation performance, and table of discharge parameters for different discharge volumes and experimental parameters for AADBD.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, S., Liu, D. et al. Fast Cross-scale Preparation of Water-repellent Hierarchical Surface via Atmospheric air Plasma for Water-in-oil Emulsion Separation. Plasma Chem Plasma Process 44, 821–836 (2024). https://doi.org/10.1007/s11090-024-10463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-024-10463-x

Keywords

Navigation