Skip to main content
Log in

Pulsed Aerosol-Assisted Low-Pressure Plasma for Thin-Film Deposition

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma-enhanced chemical vapor deposition is a well-developed technique that is commonly applied in the preparation of thin films. However, this technique is limited to thermodynamically stable and chemically inert precursor gases or vapors. Recently, pulsed aerosol-assisted plasma processes have emerged as an advantageous alternative that allows for the injection of various liquid solutions in the plasma, regardless of their properties. This study examines the production of thin films by pulsed injection of pentane aerosols into a low-pressure RF capacitively coupled plasma. This technique produces thin films with high material balance and a high degree of control by adjusting the pulsed injection parameters. At the pulse scale, pulsed injection induces a temporary increase in the working pressure, resulting in time-dependent mechanisms that can affect the dynamics of thin-film deposition at the process scale. Overall, the results show a key role of droplets and their kinetics (ballistic transport, vaporization kinetics, electrostatic confinement). Hence, to efficiently apply this method in the preparation of (multi-)functional coatings, the aerosol must be carefully characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The PDLI-plasma processes described herein are patented in EP 3275839 / WO 2018019862.

Notes

  1. free software: https://imagej.nih.gov/ij/

References

  1. Biederman H, Slavınská D (2000) Surf Coat Technol 125(1–3):371–376

    Article  CAS  Google Scholar 

  2. Hegemann D, Gaiser S (2021) J Phys D: Appl Phys 55(17):173002

    Article  ADS  Google Scholar 

  3. Tachibana K, Nishida M, Harima H, Urano Y (1984) J Phys D: Appl Phys 17(8):1727

    Article  ADS  CAS  Google Scholar 

  4. Von Keudell A, Möller W (1994) J Appl Phys 75(12):7718–7727

    Article  ADS  Google Scholar 

  5. Clay K, Speakman S, Morrison N, Tomozeiu N, Milne W, Kapoor A (1998) Diam Relat Mater 7(8):1100–1107

    Article  ADS  CAS  Google Scholar 

  6. Martinu L, Poitras D (2000) J Vac Sc Technol A: Vac Surf Films 18:2619–2645

    Article  ADS  CAS  Google Scholar 

  7. Hassan MK, Pramanik BK, Hatta A (2006) Jpn J Appl Phys 45(10S):8398

    Article  ADS  CAS  Google Scholar 

  8. Ravi N, Bukhovets V, Varshavskaya I, Sundararajan G (2007) Diam Relat Mater 16(1):90–97

    Article  ADS  CAS  Google Scholar 

  9. Hegemann D (2006) Thin Solid Films 515(4):2173–2178

    Article  ADS  CAS  Google Scholar 

  10. Andersson L, Berg S, Norström H, Olaison R, Towta S (1979) Thin Solid Films 63(1):155–160

    Article  ADS  CAS  Google Scholar 

  11. Fourches N, Turban G (1996) Plasmas Polym 1(1):47–64

    Article  CAS  Google Scholar 

  12. Fortov V, Ivlev A, Khrapak S, Khrapak A, Morfill G (2005) Phys Rep 421(1–2):1–103

    Article  ADS  MathSciNet  Google Scholar 

  13. C. Vahlas, H. Guillon, F. Senocq, B. Caussat, and S. Bonnafous, (2009) Gases Instrum., pp. 8–11,

  14. Capote G, Olaya J, Trava-Airoldi V (2014) Surf Coat Technol 251:276–282

    Article  CAS  Google Scholar 

  15. Capote G, Silva G, Trava-Airoldi V (2015) Thin Solid Films 589:286–291

    Article  ADS  CAS  Google Scholar 

  16. Chouquet C, Gerbaud G, Bardet M, Barrat S, Billard A, Sanchette F, Ducros C (2010) Surf Coat Technol 204(9–10):1339–1346

    Article  CAS  Google Scholar 

  17. Andry P, Pastel P, Varhue W (1996) J Mater Res 11(1):221–228

    Article  ADS  CAS  Google Scholar 

  18. Hormann C, Meier S, Moseler M (2009) Europ Phys J B 69:187–194

    Article  ADS  CAS  Google Scholar 

  19. Schäfer J, Fricke K, Mika F, Pokorná Z, Zajíčková L, Foest R (2017) Thin Solid Films 630:71–78

    Article  ADS  Google Scholar 

  20. Li D, Dai S, Goullet A, Granier A (2019) Plasma Process Polym 16(8):1900034

    Article  Google Scholar 

  21. Suhr H (1989) Plasma Chem Plasma Process 9(1):7S-28S

    Article  CAS  Google Scholar 

  22. Mitronika M, Granier A, Goullet A, Richard-Plouet M, Appl SN (2021) Sc 3(6):1–23

    Google Scholar 

  23. Mitronika M, Profili J, Goulet A, Gautier N, Stephant N, Stafford L, Granier A, Richard-Plouet M (2020) J Phys D: Appl Phys 54(8):085206

    Article  ADS  Google Scholar 

  24. Profili J, Levasseur O, Blaisot J-B, Koronai A, Stafford L, Gherardi N (2016) Plasma Process Polym 13(10):981–989

    Article  CAS  Google Scholar 

  25. Palumbo F, Lo Porto C, Fracassi F, Favia P (2020) Coatings 10(5):440

    Article  CAS  Google Scholar 

  26. Ogawa D, Saraf I, Sra A, Timmons R, Goeckner M, Overzet L (2009) J Vac Sc & Technol A: Vac Surf, Films 27(2):342–351

    Article  ADS  CAS  Google Scholar 

  27. M. Goeckner, D. Ogawa, I. Saraf, and L. Overzet, (2009) J. Phys.: Conf. Series, vol. 162, no. 1, pp. 012014

  28. Cacot L, Carnide G, Kahn ML, Naudé N, Stafford L, Clergereaux R (2022) Plasma Process Polym 20(3):2200165

    Article  Google Scholar 

  29. Carnide G, Cacot L, Champouret Y, Pozsgay V, Verdier T, Girardeau A, Cavarroc M, Sarkissian A, Mingotaud A-F, Vahlas C, Kahn ML, Naudé N, Safford L, Clergereaux R (2023) Coatings 13(3):630

    Article  CAS  Google Scholar 

  30. Coppins M (2010) Phys Rev Lett 104(6):065003

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Chouteau S, Mitronika M, Goullet A, Richard-Plouet M, Stafford L, Granier A (2022) J Phys D: Appl Phys 55(50):505303

    Article  CAS  Google Scholar 

  32. Sadek T, Vinchon P, Durocher-Jean A, Carnide G, Kahn ML, Clergereaux R, Stafford L (2022) Atoms 10(4):147

    Article  ADS  CAS  Google Scholar 

  33. Carnide G, Champouret Y, Valappil D, Vahlas C, Mingotaud A-F, Clergereaux R, Kahn ML (2023) Adv Sci 10(5):2204929

    Article  CAS  Google Scholar 

  34. Berndt J, Kovačević E, Stefanović I, Stepanović O, Hong SH, Boufendi L, Winter J (2009) Contrib Plasma Phys 49(3):107–133

    Article  ADS  CAS  Google Scholar 

  35. Takenaka K, Setsuhara Y (2019) Plasma Sources Sc Technol 28(6):065015

    Article  ADS  CAS  Google Scholar 

  36. Cacot L, Carnide G, Kahn ML, Clergereaux R, Naudé N, Stafford L (2022) J Phys D: Appl Phys 55(47):475202

    Article  ADS  CAS  Google Scholar 

  37. Hegemann D (2014) Comprehensive Mater Process 4:201–228

    Article  Google Scholar 

  38. Lee C, Lieberman M (1995) J Vac Sc Technol A: Vac Surf Films 13(2):368–380

    Article  ADS  CAS  Google Scholar 

  39. Shwin-Chung W, Jyh-Cheng C (1992) Intern J Heat Mass Transfer 35(10):2403–2411

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the research federation FERMAT in Toulouse for giving access to their rapid imaging facilities.

Funding

This work was financially supported by the Centre National de la Recherche Scientifique (CNRS), the STAE-RTRA foundation (Toulouse, France) under the RTRA-STAE/2014/P/VIMA/12 project grant, the National Science and Engineering Research Council in the context of the Alliance project grant, and Prima-Québec. Financial support from CNRS, Université de Montréal, and Université de Toulouse III – Paul Sabatier through their contributions to the International Research Network on Controlled Multifunctional Nanomaterials (IRN NMC) is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The experiments were performed by GC, CS, DP, ZZ, HK and RCo. GC, VP, and TV developed the high-speed camera experiments. CVF, MLK, LS, and RCl provided their expertise on AFM, DLI, chemistry, thin films and plasma processes. All authors participated in the discussion and interpretation of the data and contributed to the final manuscript.

Corresponding author

Correspondence to R. Clergereaux.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carnide, G., Simonnet, C., Parmar, D. et al. Pulsed Aerosol-Assisted Low-Pressure Plasma for Thin-Film Deposition. Plasma Chem Plasma Process (2024). https://doi.org/10.1007/s11090-024-10455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11090-024-10455-x

Keywords

Navigation