Skip to main content
Log in

The Effect of Mn/Fe Ratio on the Oxygenates Distribution from Partial Oxidation of n-C5H12 by Plasma Catalysis Over FeMn/Al2O3 Catalyst

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Oxygenates production from the partial oxidation of liquid fuel is required for a cleaner combustion. The effect of Mn/Fe ratio was investigated to improve the oxygenates formation via plasma catalytic n-C5H12 partial oxidation over FeMn/Al2O3 catalyst. The oxygenates selectivities exhibited a volcano shape with the Mn/Fe ratio and the highest value of 69% was obtained at Mn/Fe ratio of 7/3. The oxygenates selectivities were dominated by both the acidity and active oxygen species of catalyst, which could be tuned by Mn/Fe ratio. A close relationship between oxygenates selectivities, acidity, and active oxygen species of catalyst was established. The higher the active oxygen species content and the lower the acidity, the higher the oxygenates selectivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buttner W, Rivkin C, Burgess R, Hartmann K, Bloomfield I, Bubar M, Post M, Boon-Brett L, Weidner E, Moretto P (2017) Hydrogen monitoring requirements in the global technical regulation on hydrogen and fuel cell vehicles. Int J Hydrog Energy 42:7664–7671

    CAS  Google Scholar 

  2. Lim CS, Lim JH, Cha JS, Lim JY (2019) Comparative effects of oxygenates-gasoline blended fuels on the exhaust emissions in gasoline-powered vehicles. J Environ Manage 239:103–113

    CAS  PubMed  Google Scholar 

  3. Bkour Q, Che F, Lee KM, Zhou C, Akter N, Boscoboinik JA, Zhao K, Gray JT, Saunders SR, Grant Norton M, McEwen JS, Kim T, Ha S (2020) Enhancing the partial oxidation of gasoline with Mo-doped ni catalysts for SOFC applications: an integrated experimental and DFT study. Appl Catal B 266:118626

    CAS  Google Scholar 

  4. Liu Y, Qin L, Cheng Z, Goetze JW, Kong F, Fan JA, Fan LS (2019) Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation. Nat Commun 10:5503

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gallagher MJ, Geiger R, Polevich A, Rabinovich A, Gutsol A, Fridman A (2010) On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas. Fuel 89:1187–1192

    CAS  Google Scholar 

  6. Shirazi M, Neyts EC, Bogaerts A (2017) DFT study of Ni-catalyzed plasma dry reforming of methane. Appl Catal B 205:605–614

    CAS  Google Scholar 

  7. Fadaeerayeni S, Yu X, Sarnello E, Bao Z, Jiang X, Unocic RR, Fang L, Wu Z, Li T, Xiang Y (2022) Ammonia-assisted light alkane anti-coke reforming on isolated ReOx sites in zeolite. ACS Catal 12:3165–3172

    CAS  Google Scholar 

  8. Diao Y, Zhang X, Liu Y, Chen B, Wu G, Shi C (2022) Plasma-assisted dry reforming of methane over Mo2C-Ni/Al2O3 catalysts: effects of β-Mo2C promoter. Appl Catal B 301:120779

    CAS  Google Scholar 

  9. Alharbi AA, Alqahtani NB, Alkhedhair AM, Alabduly AJ, Almaleki AA, Almadih MH, Albishi MS, Almayeef AA (2022) A developed plasmatron design to enhance production of hydrogen in synthesis gas produced by a fuel reformer system, Energies,

  10. Li K, Liu JL, Li XS, Lian HY, Zhu X, Bogaerts A, Zhu AM (2018) Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis. Chem Eng J 353:297–304

    CAS  Google Scholar 

  11. Yi Y, Wang X, Jafarzadeh A, Wang L, Liu P, He B, Yan J, Zhang R, Zhang H, Liu X, Guo H, Neyts EC, Bogaerts A (2021) Plasma-catalytic ammonia reforming of methane over Cu-based catalysts for the production of HCN and H2 at reduced temperature. ACS Catal 11:1765–1773

    CAS  Google Scholar 

  12. Nguyen DB, Trinh QH, Hossain MM, Lee WG, Mok YS (2020) Enhancement of plasma-assisted catalytic CO2 reforming of CH4 to syngas by avoiding outside air discharges from ground electrode. Int J Hydrog Energy 45:18519–18532

    CAS  Google Scholar 

  13. Matyakubov N, Nguyen DB, Saud S, Mok YS (2022) Enhancing the selective catalytic reduction of NOx at low temperature by pretreatment of hydrocarbons in a gliding arc plasma. Ind Eng Chem Res 61:3365–3373

    CAS  Google Scholar 

  14. Liu S, Winter LR, Chen JG (2020) Review of plasma-assisted catalysis for selective generation of oxygenates from CO2 and CH4. ACS Catal 10:2855–2871

    CAS  Google Scholar 

  15. Fan Y, Zhao W, Shao S, Cai Y, Chen Y, Jin L (2018) Promotion of the vapors from biomass vacuum pyrolysis for biofuels under non-thermal plasma synergistic catalysis (NPSC) system. Energy 142:462–472

    CAS  Google Scholar 

  16. Xia Y, Lu N, Li J, Jiang N, Shang K, Wu Y (2020) Combined steam and CO2 reforming of CH4 for syngas production in a gliding arc discharge plasma. J CO2 Utilization 37:248–259

    CAS  Google Scholar 

  17. Wang B, Liu S, Peng Y, Wang C, Zou J (2021) Heptane dry reforming and coupling with partial oxidation in gliding arc discharge plasma for H2 production. Fuel Process Technol 221:106943

    CAS  Google Scholar 

  18. Liu S, Wang B, Cheng Y, Wang C, Zou J (2022) Ethanol partial oxidative reforming in gliding arc discharge plasma: a better understanding by a kinetic model study. Fuel 328:125309

    CAS  Google Scholar 

  19. Lian HY, Liu JL, Li XS, Zhu AM (2020) Disclosure of water roles in gliding arc plasma reforming of methanol for hydrogen production. Plasma Processes Polym 17:2000069

    CAS  Google Scholar 

  20. Zhang H, Zhu F, Li X, Cen K, Du C, Tu X (2016) Enhanced hydrogen production by methanol decomposition using a novel rotating gliding arc discharge plasma. RSC Adv 6:12770–12781

    CAS  Google Scholar 

  21. Piavis W, Turn S, Ali Mousavi SM (2015) Non-thermal gliding-arc plasma reforming of dodecane and hydroprocessed renewable diesel. Int J Hydrog Energy 40:13295–13305

    CAS  Google Scholar 

  22. Tamošiūnas A, Gimžauskaitė D, Uscila R, Aikas M (2019) Thermal arc plasma gasification of waste glycerol to syngas. Appl Energy 251:113306

    Google Scholar 

  23. Tu X, Whitehead JC (2014) Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: co-generation of syngas and carbon nanomaterials. Int J Hydrog Energy 39:9658–9669

    CAS  Google Scholar 

  24. Song F, Wu Y, Xu S, Yang X, Xuan Y (2020) N-Decane reforming by gliding arc plasma in air and nitrogen. Plasma Chem Plasma Process 40:1429–1443

    CAS  Google Scholar 

  25. Wang B, Peng Y, Yao S (2019) Oxidative reforming of n-heptane in gliding arc plasma reformer for hydrogen production. Int J Hydrog Energy 44:22831–22840

    CAS  Google Scholar 

  26. Rahmati H, Ghorbanzadeh A (2021) Parallel electrodes gliding plasma: working principles and application in dry reforming of methane. Energy 230:120753

    CAS  Google Scholar 

  27. Rahmani A, Nikravech M (2018) Impact of argon in reforming of (CH4 + CO2) in surface dielectric barrier discharge reactor to produce syngas and liquid fuels. Plasma Chem Plasma Process 38:517–534

    CAS  Google Scholar 

  28. Michielsen I, Uytdenhouwen Y, Bogaerts A, Meynen V (2019) Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material, Catalysts,

  29. Zhang X, Wenren Y, Chen J, Zhang L, Jin Y, Liu Z, Jin H, Liu Q, Zhu Z (2022) Partial oxidation of n-pentane to syngas and oxygenates in a dielectric barrier discharge reactor. Fuel 307:121814

    CAS  Google Scholar 

  30. Chawdhury P, Bhargavi KVSS, Subrahmanyam C (2020) Enhanced synergy by plasma reduced pd nanoparticles on in-plasma catalytic methane conversion to liquid oxygenates. Catal Commun 147:106139

    CAS  Google Scholar 

  31. Li J, Dou L, Gao Y, Hei X, Yu F, Shao T (2021) Revealing the active sites of the structured Ni-based catalysts for one-step CO2/CH4 conversion into oxygenates by plasma-catalysis. J CO2 Utilization 52:101675

    CAS  Google Scholar 

  32. Andersen JA, Christensen JM, Østberg M, Bogaerts A, Jensen AD (2020) Plasma-catalytic dry reforming of methane: screening of catalytic materials in a coaxial packed-bed DBD reactor. Chem Eng J 397:125519

    CAS  Google Scholar 

  33. Bouchoul N, Fourré E, Duarte A, Tanchoux N, Louste C, Batiot C, Dupeyrat (2021) Plasma-metal oxides coupling for CH4-CO2 transformation into syngas and/or hydrocarbons, oxygenates. Catal Today 369:62–68

    CAS  Google Scholar 

  34. Wang Y, Chen Y, Harding J, He H, Bogaerts A, Tu X (2022) Catalyst-free single-step plasma reforming of CH4 and CO2 to higher value oxygenates under ambient conditions. Chem Eng J 450:137860

    CAS  Google Scholar 

  35. Mei D, Sun M, Liu S, Zhang P, Fang Z, Tu X (2023) Plasma-enabled catalytic dry reforming of CH4 into syngas, hydrocarbons and oxygenates: insight into the active metals of γ-Al2O3 supported catalysts. J CO2 Utilization 67:102307

    CAS  Google Scholar 

  36. Lašič Jurković D, Puliyalil H, Pohar A, Likozar B (2019) Plasma-activated methane partial oxidation reaction to oxygenate platform chemicals over Fe, Mo, pd and zeolite catalysts. Int J Energy Res 43:8085–8099

    Google Scholar 

  37. Wang A, Harrhy JH, Meng S, He P, Liu L, Song H (2019) Nonthermal plasma-catalytic conversion of biogas to liquid chemicals with low coke formation. Energy Conv Manag 191:93–101

    CAS  Google Scholar 

  38. Gao Y, Dou L, Feng B, Zhang C, Shao T (2023) Catalyst-free activation of CH4 and air into platform chemicals and H2 using parametrized nanosecond pulsed plasma. Energy Conv Manag 276:116570

    CAS  Google Scholar 

  39. Indarto A (2016) Partial oxidation of methane to methanol with nitrogen dioxide in dielectric barrier discharge plasma: experimental and molecular modeling. Plasma Sources Sci Technol 25:025002

    Google Scholar 

  40. Chawdhury P, Kumar D, Subrahmanyam C (2019) NTP reactor for a single stage methane conversion to methanol: influence of catalyst addition and effect of promoters. Chem Eng J 372:638–647

    CAS  Google Scholar 

  41. Zhang X, He Z, Wenren Y, Wang D, Pan H, Jin Y, Zhu Z, Zhang L, Li K (2023) Enhanced oxygenates production from plasma catalytic partial oxidation of n-pentane over Fe/Al2O3 catalyst. Catal Today 420:114033

    CAS  Google Scholar 

  42. Yi Y, Li S, Cui Z, Hao Y, Zhang Y, Wang L, Liu P, Tu X, Xu X, Guo H, Bogaerts A (2021) Selective oxidation of CH4 to CH3OH through plasma catalysis: insights from catalyst characterization and chemical kinetics modelling. Appl Catal B 296:120384

    CAS  Google Scholar 

  43. Dou L, Liu Y, Gao Y, Li J, Hu X, Zhang S, Ostrikov K, Shao T (2022) Disentangling metallic cobalt sites and oxygen vacancy effects in synergistic plasma-catalytic CO2/CH4 conversion into oxygenates. Appl Catal B 318:121830

    CAS  Google Scholar 

  44. Kalamaras C, Palomas D, Bos R, Horton A, Crimmin M, Hellgardt K (2016) Selective oxidation of methane to methanol over Cu- and Fe-Exchanged zeolites: the Effect of Si/Al Molar ratio. Catal Lett 146:483–492

    CAS  Google Scholar 

  45. Wang Y, Fan L, Xu H, Du X, Xiao H, Qian J, Zhu Y, Tu X, Wang L (2022) Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO2 and CH4 over copper-based catalysts. Appl Catal B 315:121583

    CAS  Google Scholar 

  46. Chawdhury P, Wang Y, Ray D, Mathieu S, Wang N, Harding J, Bin F, Tu X, Subrahmanyam C (2021) A promising plasma-catalytic approach towards single-step methane conversion to oxygenates at room temperature. Appl Catal B 284:119735

    CAS  Google Scholar 

  47. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    CAS  Google Scholar 

  48. Wu Z, Hao X, Zhou W, Yao S, Han J, Tang X, Zhang X (2018) N-pentane activation and products formation in a temperature-controlled dielectric barrier discharge reactor. Plasma Sources Sci Technol 27:115002

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11775189 and U1709209, 22006166), the Key Research and Development Program of Zhejiang Province (2019C03117 and 2021C01102), the top-notch talent support program of Zhejiang Province (2019R51002), and the National Natural Science Foundation of China (51876194 and U1909216), Public Welfare Research Projects of Zhejiang Province (LGF21B070003), Science Foundation of Zhejiang Sci-Tech University (19022108-Y, 21022310-Y and 21022092-Y), the Achievement Cultivation Project from Shaoxing-keqiao Institute of Zhejiang Sci-Tech University (KYY2022001C).

Author information

Authors and Affiliations

Authors

Contributions

X.M. Z.: Conceptualization, Methodology, Formal analysis. W.Q. S.: Visualization, Methodology, Formal analysis. Z.J. H.: Investigation, Formal analysis. Y. L.: Visualization. D.D. W.: Visualization. H. P.: Writing - review & editing. Y.Z. J.: Formal analysis. Z.C. Z.: Writing - review & editing. L.C. Z.: Formal analysis. K. L.: Formal analysis, Conceptualization, Supervision, Writing - review & editing.

Corresponding author

Correspondence to Kai Li.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Shen, W., He, Z. et al. The Effect of Mn/Fe Ratio on the Oxygenates Distribution from Partial Oxidation of n-C5H12 by Plasma Catalysis Over FeMn/Al2O3 Catalyst. Plasma Chem Plasma Process 44, 837–852 (2024). https://doi.org/10.1007/s11090-024-10445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-024-10445-z

Keywords

Navigation