Skip to main content
Log in

Influence of Pulse Repetition Frequency on CH4 Dry Reforming by Nanosecond Pulsed Dielectric Barrier Discharges

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, the effect of pulse repetition frequency (PRF) on CH4 dry reforming by nanosecond pulsed dielectric barrier discharge (DBD) is evaluated by a zero-dimensional (0D) chemical kinetics model. The calculated conversions and product yields agree well with the reported experimentally measured results. The simulation results indicate that the vibrationally excited CH4 and CO2 molecules have negligible contributions to the CH4 and CO2 conversions with PRF from 3 to 100 kHz. However, their role in the CH4 and CO2 conversions increases due to accumulation with 1 MHz PRF. The relaxation time of CH4(v24) is considered to be around 1 μs, and the relaxation time of CH4(v13) and CH4(e) is in the range of several hundred ns. The relaxation time of CO2 vibrationally excited states is between 1 μs and 10 μs, and the relaxation time of CO2 electronically excited state is within tens of ns. The increase in PRF promotes CO2 and CH4 conversions, with growth rates of CO and H2 yields much greater than that of C2H6 and C3H8 yields. As the PRF increases from 3 to 10 kHz, the production of CO and H2 is mainly caused by the electron impact dissociations of CO2 and CH4, respectively. Inversely, the major hydrocarbon products, C2H6 and C3H8, are primarily produced via reactions among neutral species and consumed via electron impact dissociation reactions. This phenomenon suggests that the promotion of PRF on electron impact reactions is much greater than its benefits in reactions between neutral species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bogaerts A, Tu X, Whitehead JC, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H-H, Murphy AB, Schneider WF, Nozaki T, Hicks JC, Rousseau A, Thevenet F, Khacef A, Carreon M (2020) The 2020 plasma catalysis roadmap. J Phys D Appl Phys 53(44):443001

    Article  CAS  Google Scholar 

  2. Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43(22):7813–7837

    Article  CAS  PubMed  Google Scholar 

  3. Shao T, Wang R, Zhang C, Yan P (2018) Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications. High voltage 3(1):14–20

    Article  Google Scholar 

  4. Vakili R, Gholami R, Stere CE, Chansai S, Chen H, Holmes SM, Jiao Y, Hardacre C, Fan X (2020) Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Appl Catal B 260:118195

    Article  CAS  Google Scholar 

  5. Snoeckx R, Zeng YX, Tu X, Bogaerts A (2015) Plasma-based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge. RSC Adv 5(38):29799–29808

    Article  Google Scholar 

  6. Bogaerts A, Berthelot A, Heijkers S, Kolev S, Snoeckx R, Sun S, Trenchev G, Van Laer K, Wang W (2017) CO2conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design. Plasma Sources Sci Technol 26(6):063001

    Article  Google Scholar 

  7. Cui Z, Meng S, Yi Y, Jafarzadeh A, Li S, Neyts EC, Hao Y, Li L, Zhang X, Wang X, Bogaerts A (2022) Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism. ACS Catal 12(2):1326–1337

    Article  CAS  Google Scholar 

  8. Wang X, Gao Y, Zhang S, Sun H, Li J, Shao T (2019) Nanosecond pulsed plasma assisted dry reforming of CH4: the effect of plasma operating parameters. Appl Energy 243:132–144

    Article  CAS  Google Scholar 

  9. Scapinello M, Martini LM, Dilecce G, Tosi P (2016) Conversion of CH4 /CO2 by a nanosecond repetitively pulsed discharge. J Phys D Appl Phys 49(7):075602

    Article  Google Scholar 

  10. Montesano C, Faedda M, Martini LM, Dilecce G, Tosi P (2021) CH4 reforming with CO2 in a nanosecond pulsed discharge. The importance of the pulse sequence. J CO2 Util 49:101556

    Article  CAS  Google Scholar 

  11. Wang W, Snoeckx R, Zhang X, Cha MS, Bogaerts A (2018) Modeling Plasma-based CO2 and CH4 conversion in mixtures with N2, O2, and H2O: The bigger plasma chemistry picture. J Phys Chem C 122(16):8704–8723

    Article  CAS  Google Scholar 

  12. Snoeckx R, Aerts R, Tu X, Bogaerts A (2013) Plasma-based dry reforming: a computational study ranging from the nanoseconds to seconds time scale. J Phys Chem C 117(10):4957–4970

    Article  CAS  Google Scholar 

  13. Bogaerts A, De Bie C, Snoeckx R, Kozák T (2017) Plasma based CO2 and CH4 conversion: a modeling perspective. Plasma Process Polym 14(6):1600070

    Article  Google Scholar 

  14. Zhang L, Heijkers S, Wang W, Martini LM, Tosi P, Yang D, Fang Z, Bogaerts A (2022) Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling. Plasma Sources Sci Technol 31(5):055014

    Article  Google Scholar 

  15. Pan J, Chen T, Gao Y, Liu Y, Zhang S, Liu Y, Shao T (2021) Numerical modeling and mechanism investigation of nanosecond-pulsed DBD plasma-catalytic CH4 dry reforming. J Phys D Appl Phys 55(3):035202

    Article  Google Scholar 

  16. Aerts R, Martens T, Bogaerts A (2012) Influence of vibrational states on CO2 splitting by dielectric barrier discharges. J Phys Chem C 116(44):23257–23273

    Article  CAS  Google Scholar 

  17. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Kozák T, Bogaerts A (2015) Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model. Plasma Sources Sci Technol 24(1):015024

    Article  Google Scholar 

  19. Snoeckx R, Bogaerts A (2017) Plasma technology–a novel solution for CO2 conversion? Chem Soc Rev 46(19):5805–5863

    Article  CAS  PubMed  Google Scholar 

  20. Vermeiren V, Bogaerts A (2019) Improving the energy efficiency of CO2 conversion in nonequilibrium plasmas through pulsing. J Phys Chem C 123(29):17650–17665

    Article  CAS  Google Scholar 

  21. Pancheshnyi S, Eismann B, Hagelaar G, Pitchford L (2008) Computer code ZDPlasKin http://www.zdplaskin.laplace.univ-tlse.fr/. University of Toulouse, Toulouse

    Google Scholar 

  22. Kozák T, Bogaerts A (2014) Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model. Plasma Sources Sci Technol 23(4):045004

    Article  Google Scholar 

  23. Cleiren E, Heijkers S, Ramakers M, Bogaerts A (2017) Dry reforming of methane in a gliding arc plasmatron: towards a better understanding of the plasma chemistry. Chemsuschem 10(20):4025–4036

    Article  CAS  PubMed  Google Scholar 

  24. Maitre PA, Bieniek MS, Kechagiopoulos PN (2021) Modelling excited species and their role on kinetic pathways in the non-oxidative coupling of methane by dielectric barrier discharge. Chem Eng Sci 234:116399

    Article  CAS  Google Scholar 

  25. Hagelaar GJM, Pitchford LC (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14(4):722–733

    Article  CAS  Google Scholar 

  26. Leanne LLA, Pitchford C, Bartschat K, Biagi SF, Marie-Claude Bordage IB, Brion CE, Brunger MJ, Laurence Campbell AC, Bhaskar Chaudhury EC, Christophorou LG, Dyatko NA, Christian DVF, Franck M, Gangwar RK, Vasco Guerra GJMH, Haefliger P, Hoesl A, Yukikazu Itikawa RPM, Kochetov IV, Lowell Morgan W, Anatoly VP, Napartovich P, Rabie M, Lalita Sharma ADS, Srivastava R, Tennyson J, Jaime de Urquijo LAV, van Dijk J, Zammit MC, Zatsarinny O, Pancheshnyi S (2017) LXCat: an open-access, web-based platform for data needed for modeling low temperature plasmas. Plasma Process Polym 14:1600098

    Article  Google Scholar 

  27. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chemistry Plasma Process 23(1):1–46

    Article  CAS  Google Scholar 

  28. Butterworth T, van de Steeg A, van den Bekerom D, Minea T, Righart T, Ong Q, van Rooij G (2020) Plasma induced vibrational excitation of CH4—a window to its mode selective processing. Plasma Sources Sci Technol 29(9):095007

    Article  CAS  Google Scholar 

  29. Menard-Bourcin F, Boursier C, Doyennette L, Menard J (2005) Rotational and vibrational relaxation of methane excited to 2ν3 in CH4/H2 and CH4/He mixtures at 296 and 193 K from double-resonance measurements. J Phys Chem A 109:3111–3119

    Article  CAS  PubMed  Google Scholar 

  30. Nozaki T, Okazaki K (2013) Non-thermal plasma catalysis of methane: principles, energy efficiency, and applications. Catal Today 211:29–38

    Article  CAS  Google Scholar 

  31. Sun J, Chen Q (2019) Kinetic roles of vibrational excitation in RF plasma assisted methane pyrolysis. J Energy Chem 39:188–197

    Article  Google Scholar 

  32. Heijkers S, Aghaei M, Bogaerts A (2020) Plasma-based CH4 conversion into higher hydrocarbons and H2: Modeling to reveal the reaction mechanisms of different plasma sources. J Phys Chem C Nanomater Interfaces 124(13):7016–7030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu C, Tu X (2013) Plasma-assisted methane conversion in an atmospheric pressure dielectric barrier discharge reactor. J Energy Chem 22(3):420–425

    Article  CAS  Google Scholar 

  34. Ozkan A, Dufour T, Silva T, Britun N, Snyders R, Bogaerts A, Reniers F (2016) The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2. Plasma Sources Sci Technol 25(2):025013

    Article  Google Scholar 

  35. Qazi HIA, Sharif M, Hussain S, Badar MA, Afzal H (2013) Spectroscopic study of a radio-frequency atmospheric pressure dielectric barrier discharge with anodic alumina as the dielectric. Plasma Sci Technol 15(9):900–903

    Article  Google Scholar 

  36. Boisvert JS, Stafford L, Naudé N, Margot J, Massines F (2018) Electron density and temperature in an atmospheric-pressure helium diffuse dielectric barrier discharge from kHz to MHz. Plasma Sources Sci Technol 27(3):035005

    Article  Google Scholar 

  37. Boisvert JS, Margot J, Massines F (2017) Transitions of an atmospheric-pressure diffuse dielectric barrier discharge in helium for frequencies increasing from kHz to MHz. Plasma Sources Sci Technol 26(3):035004

    Article  Google Scholar 

  38. Wang JCF, Springer GS (1973) Vibrational relaxation times in some hydrocarbons in the range 300–900°K. J Chem Phys 59(12):6556–6562

    Article  CAS  Google Scholar 

  39. Richards LW, Sigafoos DH (1965) Vibrational relaxation of methane. J Chem Phys 43(2):492–497

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Guangdong basic and applied basic research foundation (No. 2021A1515110704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaolun Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 879 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Hao, Y. & Cui, Z. Influence of Pulse Repetition Frequency on CH4 Dry Reforming by Nanosecond Pulsed Dielectric Barrier Discharges. Plasma Chem Plasma Process 43, 1941–1962 (2023). https://doi.org/10.1007/s11090-023-10373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10373-4

Keywords

Navigation