Skip to main content
Log in

The Effect of the Process Parameters on the Growth Rate and Composition of the Anti Scratch Films Deposited from TEOS by AP-PECVD on Polycarbonate

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper we report on a study of the composition and growth rate of anti scratch silica-like coatings deposited on polycarbonate (PC) in an atmospheric pressure dielectric barrier discharge using a low frequency (28 kHz) high voltage generator in the tetraethoxysilane/He/O2 system. For the first time for this purpose the discharge was sustained between upper metal mesh and lower insulated solid electrodes and this reactor design had shown good results in uniformity of the scratch resistive films on plastic substrates. It has been shown that plasma pretreatment in pure helium leads to the 2.5-fold increase of PC surface energy in comparison to an untreated PC and provides a high adhesion of films deposited even at low deposition temperature (110 °C). Scratching experiments were carried out using standard test method for film hardness by pencil scratch test. The variations of coating hardness with the process parameters have been studied. It was found that despite some positive changes in the composition of the films, the introduction of oxygen had no significant improvement in the coatings’ properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Brazel CS, Rosen SL (2012) Fundamental principles of polymeric materials. Wiley, New York

    Google Scholar 

  2. Campo EA (2008) Selection of polymeric materials: how to select design properties from different standards. William Andrew Inc, New York

    Google Scholar 

  3. Alias AN, Zabidi ZM, Ali AMM, Harun MK, & Yahya MZA (2013) Optical characterization and properties of polymeric materials for optoelectronic and photonic applications. Int J Appl Sci Technol 3(5)

  4. Shah QH, Abakr YA (2008) Effect of distance from the support on the penetration mechanism of clamped circular polycarbonate armor plates. Int J Impact Eng 35:1244–1250. https://doi.org/10.1016/j.ijimpeng.2007.07.012

    Article  Google Scholar 

  5. Jadhav VD, Patil AJ, Kandasubramanian B (2022) Polycarbonate nanocomposites for high impact applications. Handb Consumer Nanoprod. https://doi.org/10.1007/978-981-16-8698-6_22

    Article  Google Scholar 

  6. Seubert C, Nietering K, Nichols M, Wykoff R, Bollin S (2012) An overview of the scratch resistance of automotive coatings: exterior clearcoats and polycarbonate hardcoats. Coatings 2(4):221–234. https://doi.org/10.3390/coatings2040221

    Article  CAS  Google Scholar 

  7. Kim N (2017) Recent progress of functional coating materials and technologies for polycarbonate. J Coat Technol Res 14(1):21–34. https://doi.org/10.1007/s11998-016-9837-x

    Article  CAS  Google Scholar 

  8. Tanaka S, Endo H, Shirakura A, Kudo S, Suzuki T (2021) Improved abrasion resistance of silica-based CVD thin films on polycarbonate substrates for automotive applications. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenomena 39(4):040602. https://doi.org/10.1116/6.0001040

    Article  CAS  Google Scholar 

  9. Liu M, Yang S, Gao C (2020) Scratch behavior of polycarbonate by Rockwell C diamond indenter under progressive loading. Polym Test 90:106643. https://doi.org/10.1016/j.polymertesting.2020.106643

    Article  CAS  Google Scholar 

  10. Dinelli M, Fabbri E, Bondioli F (2011) TiO2–SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. J Sol-Gel Sci Technol 58(2):463–469. https://doi.org/10.1007/s10971-011-2413-z

    Article  CAS  Google Scholar 

  11. Yahyaei H, Mohseni M (2013) Use of nanoindentation and nanoscratch experiments to reveal the mechanical behavior of sol–gel prepared nanocomposite films on polycarbonate. Tribol Int 57:147–155. https://doi.org/10.1016/j.triboint.2012.08.004

    Article  CAS  Google Scholar 

  12. Le Bail N, Benayoun S, Toury B (2015) Mechanical properties of sol–gel coatings on polycarbonate: a review. JJ Sol-Gel Sci Technol 75(3):710–719. https://doi.org/10.1007/s10971-015-3781-6

    Article  CAS  Google Scholar 

  13. Ong HC, Chang RPH, Baker N, Oliver WC (1997) Improvement of mechanical properties of amorphous carbon films deposited on polycarbonate plastics. Surf Coat Technol 89(1–2):38–46. https://doi.org/10.1016/S0257-8972(96)02898-8

    Article  CAS  Google Scholar 

  14. Schäfer J, Hnilica J, Šperka J, Quade A, Kudrle V, Foest R, Zajίčková L (2016) Tetrakis (trimethylsilyloxy) silane for nanostructured SiO2-like films deposited by PECVD at atmospheric pressure. Surf Coat Technol 295:112–118. https://doi.org/10.1016/j.surfcoat.2015.09.047

    Article  CAS  Google Scholar 

  15. Meshkova AS, Starostin SA, van de Sanden MCM, de Vries HW (2018) Variable roughness development in statically deposited SiO2 thin films: a spatially resolved surface morphology analysis. J Phys D Appl Phys 51(28):285303. https://doi.org/10.1088/1361-6463/aacb1c

    Article  Google Scholar 

  16. Zhang H, Guo Z, Chen Q, Wang X, Wang Z, Liu Z (2016) Deposition of silicon oxide coatings by atmospheric pressure plasma jet for oxygen diffusion barrier applications. Thin Solid Films 615:63–68. https://doi.org/10.1016/j.tsf.2016.06.042

    Article  CAS  Google Scholar 

  17. Ge J, Khanna A, Mueller T (2018) Surface passivation using silicon oxide by atmospheric pressure plasma coating system. In: 2018 IEEE 7th world conference on photovoltaic energy conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC). IEEE, pp 2129–2131. https://doi.org/10.1109/PVSC.2018.8547998

  18. Bil AS, Alexandrov SE (2022) The effect of the process parameters on the composition and properties of silica-like films deposited by atmospheric pressure PECVD in the system TEOS-He-O2. Plasma Chem Plasma Process 42(6):1345–1360. https://doi.org/10.1007/s11090-022-10287-7

    Article  CAS  Google Scholar 

  19. Samaei A, Chaudhuri S (2020) Understanding the dynamic growth environment of silicon dioxide in atmospheric pressure plasma using multiphysics modeling. Surf Interfaces 21:100739. https://doi.org/10.1016/j.surfin.2020.100739

    Article  CAS  Google Scholar 

  20. Wu LY, Chwa E, Chen Z, Zeng XT (2008) A study towards improving mechanical properties of sol–gel coatings for polycarbonate. Thin Solid Films 516(6):1056–1062. https://doi.org/10.1016/j.tsf.2007.06.149

    Article  CAS  Google Scholar 

  21. Van Oss CJ (2006) Interfacial forces in aqueous media. CRC Press, Boca Raton

    Google Scholar 

  22. Standard, A. S. T. M. (2020) Standard test method for film hardness by pencil test. D3363–20, 3363-20

  23. Cariou JM, Dugas J, Martin L, Michel P (1986) Refractive-index variations with temperature of PMMA and polycarbonate. Appl Opt 25(3):334–336. https://doi.org/10.1364/AO.25.000334

    Article  CAS  PubMed  Google Scholar 

  24. Latella BA, Triani G, Evans PJ (2007) Toughness and adhesion of atomic layer deposited alumina films on polycarbonate substrates. Scripta Mater 56(6):493–496. https://doi.org/10.1016/j.scriptamat.2006.11.021

    Article  CAS  Google Scholar 

  25. Barron THK, Collins JF, Smith TW, White GK (1982) Thermal expansion, Gruneisen functions and static lattice properties of quartz. J Phys C Solid State Phys 15(20):4311. https://doi.org/10.1088/0022-3719/15/20/016

    Article  CAS  Google Scholar 

  26. Alexander MR, Short RD, Jones FR, Michaeli W, Blomfield CJ (1999) A study of HMDSO/O2 plasma deposits using a high-sensitivity and-energy resolution XPS instrument: curve fitting of the Si 2p core level. Appl Surf Sci 137(1–4):179–183. https://doi.org/10.1016/S0169-4332(98)00479-6

    Article  CAS  Google Scholar 

  27. Stout PJ, Kushner MJ (1993) Monte Carlo simulation of surface kinetics during plasma enhanced chemical vapor deposition of SiO2 using oxygen/tetraethoxysilane chemistry. J Vac Sci Technol A Vacuum Surf Films 11(5):2562–2571. https://doi.org/10.1116/1.578607

    Article  CAS  Google Scholar 

  28. Peña-Rodríguez O, Manzano-Santamaría J, Olivares J, Rivera A, Agulló-López F (2012) Refractive index changes in amorphous SiO2 (silica) by swift ion irradiation. Nucl Instrum Methods Phys Res B 277:126–130. https://doi.org/10.1016/j.nimb.2011.12.057

    Article  CAS  Google Scholar 

  29. Iliescu C (2019) Characterization of TEOS thin film depositions on PECVD reactors. Ann Acad Roman Sci Ser Sci Technol Inf 12(1):17–30

    Google Scholar 

  30. Abbasi-Firouzjah M, Hossein SI, Shariat M, Shokri B (2013) The effect of TEOS plasma parameters on the silicon dioxide deposition mechanisms. J Non-Cryst Solids 368:86–92. https://doi.org/10.1016/j.jnoncrysol.2013.03.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of the World-class Research Center program: Advanced Digital Technologies (Contract No. 075-15-2022-311 dated 20 April 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia S. Bil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bil, A.S., Alexandrov, S.E. The Effect of the Process Parameters on the Growth Rate and Composition of the Anti Scratch Films Deposited from TEOS by AP-PECVD on Polycarbonate. Plasma Chem Plasma Process 43, 901–920 (2023). https://doi.org/10.1007/s11090-023-10331-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10331-0

Keywords

Navigation