Skip to main content
Log in

Experimental Study on Influences of C3H6 and CO2 in Diesel Exhaust on Desulfurization and Denitrification by Nonthermal Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Effects of C3H6 and CO2 on desulfurization and denitrification by nonthermal plasma (NTP) and formation of the by-product CO were investigated under the simulated diesel exhaust condition. Optical emission spectroscopy (OES) was employed to observe the plasma process, and effects of C3H6 and CO2 on the emission intensities of O \({\text{(3p}}^{{5}} {\text{P}} \to {\text{3s}}^{{5}} {\text{S}}_{{2}}^{{0}} {)}\) and OH \(({A}^{2}{\sum }^{+}\to {\mathrm{X}}^{2}\prod )\) were detected. The experimental result shows that the CO2 concentration has negligible effect on formation of O and OH radicals, and the change in the CO2 concentration has no significant impact on the removal of NO and SO2, but every 1% increase of the CO2 concentration will raise the CO by about 22.5 ppm. When the C3H6 concentration increases from 0 to 600 ppm, the NO removal efficiency increases from 42.8 to 70.5%. However, the existence of C3H6 has marginal effect on the SO2 removal. C3H6 is an effective additive for the oxidative removal of NO, which can react with O and OH radicals in DBD reactor and generate a lot of oxidative radicals including HO2 and RO2 (C2H5O2, CH3O2, HOC3H6O2). The generated HO2 and RO2 will replace O and OH radicals as the main species to realize the oxidative removal of NO. However, the by-product CO formed in the plasma process and the unreacted C3H6 also need to be concerned. Through analyzing the mechanism of CO2 and C3H6 promoting the removal of NO and SO2 in a more realistic simulated gas atmosphere based on OES, the present study can provide guidance for improving the efficiencies of desulfurization and denitrification for marine diesel exhaust by NTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cengiz D, Burak Z (2016) J Clean Prod 113:438. https://doi.org/10.1016/j.jclepro.2015.11.089

    Article  CAS  Google Scholar 

  2. Wang ZY et al (2019) RSC Adv 9:5402. https://doi.org/10.1039/c8ra09217f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boone L (2012) Carb Clim Law Rev 6(1):13. https://doi.org/10.21552/CCLR/2012/1/204

    Article  Google Scholar 

  4. Francesco DN, Claudia C (2015) Transp Res Part D Transp Environ 40(14):166. https://doi.org/10.1016/j.trd.2015.08.011

    Article  Google Scholar 

  5. Fang P et al (2017) Chem Indus Eng Prog 36(3):1067

    Google Scholar 

  6. IMO, 2019a Nitrogen oxides (NOx)-regulation 13. Accessed 21 Feburary 2019. https://www.imo.org/en/ourwork/environment/pollutionprevention/airpollution/pages/nitrogen-oxides-(nox)-%E2%80%93-regulation-13.aspx

  7. IMO, 2019b Sulphur Oxides (SOx) and particulate matter (PM)-regulation 14. Accessed 22 Feburary 2019. https://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Sulphur-oxides-(SOx)-%E2%80%93-Regulation-14.aspx

  8. Feng T, Lü L (2015) J Ind Eng Chem 28:97. https://doi.org/10.1016/j.jiec.2015.02.004

    Article  CAS  Google Scholar 

  9. Chen S et al (2019) Fuel Process Technol 186:125. https://doi.org/10.1016/j.fuproc.2018.12.022

    Article  CAS  Google Scholar 

  10. Dean B, Radoslav R (2011) Sci J Marit Res 25(1):15

    Google Scholar 

  11. Fang P et al (2011) Chem Eng J 168(1):52. https://doi.org/10.1016/j.cej.2010.12.030

    Article  CAS  Google Scholar 

  12. Jolibois J, Takashima K, Mizuno A (2012) J Electrostat 70(3):300. https://doi.org/10.1016/j.elstat.2012.03.011

    Article  CAS  Google Scholar 

  13. Kuroki T et al (2001) IEEE Trans Ind Appl 38(5):1204. https://doi.org/10.1109/TIA.2002.802919

    Article  Google Scholar 

  14. Wang MY, Sun YF, Zhu TL (2013) IEEE Trans Plasma Sci 41(2):312. https://doi.org/10.1109/TPS.2012.2234483

    Article  CAS  Google Scholar 

  15. Ma S et al (2017) Renew Sustain Energy Rev 67:791. https://doi.org/10.1016/j.rser.2016.09.066

    Article  CAS  Google Scholar 

  16. Mizuno A et al (1995) IEEE Trans Ind Appl 31(5):957. https://doi.org/10.1109/28.464504

    Article  CAS  Google Scholar 

  17. Kim HH et al (2001) J Phys D Appl Phys 34(4):604. https://doi.org/10.1088/0022-3727/34/4/322

    Article  CAS  Google Scholar 

  18. Mok YS et al (2000) Ind Eng Chem Res 39(10):3938. https://doi.org/10.1021/ie000239o

    Article  CAS  Google Scholar 

  19. Shang K, Wu Y (2009) 2009 3rd international conference on bioinformatics and biomedical engineering, Beijing, China. https://doi.org/10.1109/icbbe.2009.5162261

  20. Cai YX et al (2010) Plasma Sci Technol 12:482. https://doi.org/10.1088/1009-0630/12/4/19

    Article  CAS  Google Scholar 

  21. Schmidt M, Basner R, Brandenburg R (2013) Plasma Chem Plasma Process 33(1):323. https://doi.org/10.1007/s11090-012-9424-6

    Article  CAS  Google Scholar 

  22. Li XH et al (2013) Environ Chem 12:2297. https://doi.org/10.7524/j.issn.0254-6108.2013.12.011

    Article  CAS  Google Scholar 

  23. Wang T et al (2012) SIESC J 11:285. https://doi.org/10.3969/j.issn.0438-1157.2012.11.040

    Article  CAS  Google Scholar 

  24. Zhang X et al (2016) React Eng Technol 6:553

    CAS  Google Scholar 

  25. Liu F (2018) Experimental study on the oxidation of NO by non-thermal Plasma. Master thesis, Wuhan University of Technology (in Chinese)

  26. Cai YK, Lv L, Lu XP (2021) High Volt 6(6):1092

    Article  Google Scholar 

  27. Cai YK, Lv L, Li P (2020) Appl Sci 10(19):6766. https://doi.org/10.3390/app10196766

    Article  CAS  Google Scholar 

  28. Eichwald O et al (1997) J Appl Phys 82(10):4781. https://doi.org/10.1063/1.366336

    Article  CAS  Google Scholar 

  29. Shin HH, Yoon WS (2003) Plasma Chem Plasma Process 23(4):681. https://doi.org/10.1023/A:1025595318945

    Article  CAS  Google Scholar 

  30. Zhu TL (2018) Removal of nitrogen oxides and fog particles from wet flue gas desulfurization exhaust by non-thermal plasma. NSFC shared service network (in Chinese). http://output.nsfc.gov.cn/conclusionProject/21377009

  31. Paris P et al (2005) J Phys D Appl Phys 38(21):3894. https://doi.org/10.1088/0022-3727/38/21/010

    Article  CAS  Google Scholar 

  32. Cai YK, Lv L, Lu XP (2021) IEEE Trans Plasma Sci 49(2):786. https://doi.org/10.1109/TPS.2021.3049126

    Article  CAS  Google Scholar 

  33. Chae JO (2003) J Electrostat 57:251. https://doi.org/10.1016/S0304-3886(02)00165-1

    Article  CAS  Google Scholar 

  34. Wang XC, Shang KF (2009) High Volt Eng 35(5):1122

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of Hubei Province of China (grant number 2022CFB730). And, I would like to thank Professor Lu Xinpei of Huazhong University of Science and Technology for his guidance and help in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neng Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Xiang, C., Zhu, N. et al. Experimental Study on Influences of C3H6 and CO2 in Diesel Exhaust on Desulfurization and Denitrification by Nonthermal Plasma. Plasma Chem Plasma Process 43, 619–633 (2023). https://doi.org/10.1007/s11090-023-10321-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10321-2

Keywords

Navigation