Skip to main content
Log in

Investigation on Localized Etching Behaviors of Polymer Film by Atmospheric Pressure Plasma Jets

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper investigates the effect of physical bombardment, chemical reaction etching and ultraviolet (UV) radiation on polymer film etching by atmospheric pressure He, O2 and He/O2 plasma jets. Physical morphologies and chemical compositions of the etched surfaces were analyzed. It was found that in the absence of oxygen-containing reactive species, the etched polymer surface was rough with ultra-low etching rate by He plasma jet, and the chemical compositions of the etched surface kept unchanged in this condition. UV radiation played the minimum role in the etching process and it only modify the film surface through photooxidation. Rapid and effective etching can only be achieved by the synergistic effects of charged particle’s bombardment, chemical reaction etching of reactive species and UV radiation. The results can provide reference for deeper understanding and better controlling the etching process of polymer films by an atmospheric pressure plasma jet.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Winter J, Brandenburg R, Weltmann KD (2015) Atmospheric pressure plasma jets: an overview of devices and new directions. Plasma Sources Sci Technol 24:064001

    Article  Google Scholar 

  2. Lin L, Keidar M (2021) A map of control for cold atmospheric plasma jets: from physical mechanisms to optimizations. Appl Phys Rev 8:011306

    Article  CAS  Google Scholar 

  3. Wang R, Xu H, Zhao Y, Zhu W, Zhang C, Shao T (2019) Spatial-temporal evolution of a radial plasma jet array and its interaction with material. Plasma Chem Plasma Process 39:187–203

    Article  CAS  Google Scholar 

  4. Graves DB (2014) Low temperature plasma biomedicine: A tutorial review. Phys Plasmas 21:080901

    Article  Google Scholar 

  5. Xie P, Qi Y, Wang R, Wu J, Li X (2019) Aqueous gold nanoparticles generated by AC and pulse-power-driven plasma jet. Nanomaterials 9(10):1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang C, Ma Y, Kong F, Yan P, Chang C, Shao T (2019) Atmospheric pressure plasmas and direct fluorination treatment of Al2O3-filled epoxy resin: a comparison of surface charge dissipation. Surf Coat Technol 362:1–11

    Article  CAS  Google Scholar 

  7. Bashir M, Bashir S (2015) Hydrophobic-hydrophilic character of hexamethyldisiloxane films polymerized by atmospheric pressure plasma jet. Plasma Chem Plasma Process 35:739–755

    Article  CAS  Google Scholar 

  8. Tian H, Zhang P, Wu J, Xin Q, Yu D (2022) A Prediction method of the removal function for inductively coupled atmospheric pressure plasma processing based on jet morphology monitoring and diagnosis. Plasma Chem Plasma Process 42:905–922

    Article  CAS  Google Scholar 

  9. Chen F, Liu S, Liu J, Huang S, Liu X (2016) Surface modification of tube inner wall by transferred atmospheric pressure plasma. Appl Surf Sci 389:967–976

    Article  CAS  Google Scholar 

  10. De Geyter N, Sarani A, Jacobs T, Nikiforov AY, Desmet T, Dubruel P (2013) Surface modification of Poly-ε-caprolactone with an atmospheric pressure plasma Jet. Plasma Chem Plasma Process 33:165–175

    Article  CAS  Google Scholar 

  11. Knoll AJ, Luan P, Pranda A, Bruce RL, Oehrlein GS (2018) Polymer etching by atmospheric-pressure plasma jet and surface micro-discharge sources: activation energy analysis and etching directionality. Plasma Process Polym 15:1700217

    Article  Google Scholar 

  12. Toda S, Nakazawa K, Ogino A, Shimomura M, Iwata F (2021) Micromachining of polymers using atmospheric pressure inductively coupled helium plasma localized by a scanning nanopipette probe microscope. J Micromech Microeng 31:065008

    Article  CAS  Google Scholar 

  13. Narimisa M, Onyshchenko Y, Morent R, De Geyter N (2021) Improvement of PET surface modification using an atmospheric pressure plasma jet with different shielding gases. Polymer 215:123421

    Article  CAS  Google Scholar 

  14. Lee N, Yoo S, Kim CH, Lim J (2019) Development of continuous metal patterns using two-dimensional atmospheric-pressure plasma-jet: on application to fabricate electrode on a flexible surface for film touch sensor. J Micromech Microeng 29:045013

    Article  CAS  Google Scholar 

  15. Wang T, Yang B, Chen X, Wang X, Yang C, Liu J (2016) Nonhomogeneous surface properties of parylene-C film etched by an atmospheric pressure He/O2 micro-plasma jet in ambient air. Appl Surf Sci 383:261–267

    Article  CAS  Google Scholar 

  16. Knoll AJ, Luan P, Bartis EAJ, Hart C, Raitses Y, Oehrlein GS (2014) Real time characterization of polymer surface modifications by an atmospheric-pressure plasma jet: electrically coupled versus remote mode. Appl Phys Lett 105:171601

    Article  Google Scholar 

  17. Wang L, Zheng Y, Wu C, Jia S (2016) Experimental investigation of photoresist etching by kHz AC atmospheric pressure plasma jet. Appl Surf Sci 385:191–198

    Article  CAS  Google Scholar 

  18. Luan P, Knoll AJ, Wang H, Kondeti VSSK, Bruggeman PJ, Oehrlein GS (2016) Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor. J Phys D Appl Phys 50:03LT02

    Article  Google Scholar 

  19. Guo H, Liu J, Yang B, Chen X, Yang C (2014) Localized etching of polymer films using an atmospheric pressure air plasma jet. J Micromech Microeng 25:015010

    Article  Google Scholar 

  20. Fricke K, Reuter S, Schroder D, Schulz-von der Gathen V, Weltmann KD, von Woedtke T (2012) Investigation of surface etching of poly (ether ether ketone) by atmospheric-pressure plasmas. IEEE Trans Plasma Sci 40:2900–2911

    Article  CAS  Google Scholar 

  21. Knoll AJ, Luan P, Bartis E, Kondeti V, Bruggeman PJ, Oehrlein GS (2016) Cold atmospheric pressure plasma VUV interactions with surfaces: effect of local gas environment and source design. Plasma Process Polym 13:1069–1079

    Article  Google Scholar 

  22. Zaplotnik R, Vesel A (2020) Effect of VUV radiation on surface modification of polystyrene exposed to atmospheric pressure plasma jet. Polymers 12:1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiong Q, Nikiforov AY, González M, Leys C, Lu XP (2013) Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy. Plasma Sources Sci Technol 22:015011

    Article  CAS  Google Scholar 

  24. Hubert J, Dufour T, Vandencasteele N, Desbief S, Lazzaroni R, Reniers F (2012) Etching processes of polytetrafluoroethylene surfaces exposed to He and He-O2 atmospheric post-discharges. Langmuir 28:9466–9474

    Article  CAS  PubMed  Google Scholar 

  25. Xu H, Chen C, Liu D, Wang W, Kong G (2019) The effect of gas additives on the reactive species and bacterial inactivation by a helium plasma jet. Plasma Sci Technol 21:68–76

    Article  Google Scholar 

  26. Lu B, Zheng S, Quach BQ, Tai YC (2010) A study of the auto fluorescence of parylene materials for TAS applications. Lab Chip 10:1826–1834

    Article  CAS  PubMed  Google Scholar 

  27. Mawhinney DB, Glass JA, Yates JT (1997) FTIR study of the oxidation of porous silicon. J Phys Chem B 101:1202–1206

    Article  CAS  Google Scholar 

  28. Wang T, Wang J, Wang S, Lv L, Li M, Shi L (2021) Effect of metal mesh addition on polymer surface etching by an atmospheric pressure plasma jet. Appl Surf Sci 570:151258

    Article  CAS  Google Scholar 

  29. Vandencasteele N, Broze B, Collette S, De Vos C, Viville P, Lazzaroni R, Reniers F (2010) Evidence of the synergetic role of charged species and atomic oxygen in the molecular etching of PTFE surfaces for hydrophobic surface synthesis. Langmuir 26:16503–16509

    Article  CAS  PubMed  Google Scholar 

  30. Kim JY, Ballato J, Kim SO (2012) Intense and energetic atmospheric pressure plasma jet arrays. Plasma Process Polym 9:253–260

    Article  CAS  Google Scholar 

  31. Pruden KG, Sinclair K, Beaudoin S (2003) Characterization of parylene-N and parylene-C photooxidation. J Polym Sci A Polym Chem 41:1486–1496

    Article  CAS  Google Scholar 

  32. Murillo R, Poncin-Epaillard F, Segui Y (2007) Plasma etching of organic material: combined effects of charged and neutral species. Eur Phys J Appl Phys 37:299–305

    Article  CAS  Google Scholar 

  33. Wei GD, Ren CS, Qian MY, Nie QY (2011) Optical and electrical diagnostics of cold Ar atmospheric pressure plasma jet generated with a simple DBD configuration. IEEE Trans Plasma Sci 39:1842–1848

    Article  CAS  Google Scholar 

  34. Dufour T, Hubert J, Vandencasteele N, Viville P, Lazzaroni R, Reniers F (2013) Competitive and synergistic effects between excimer VUV radiation and O radicals on the etching mechanisms of polyethylene and fluoropolymer surfaces treated by an atmospheric He-O2 post-discharge. J Phys D Appl Phys 46:467–473

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the National Natural Science Foundation of China (Grant No. 51905002), Anhui Provincial Natural Science Foundation (Grant Nos. 2008085QE230, 2108085ME174, 2108085QE228), Open project of Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Grant No. GFST2021KF06), Open Project of Anhui Province Engineering Laboratory of Intelligent Demolition Equipment (Grant No. APELIDE2021B001), scientific research project of graduate student in Anhui Province (YJS20210345) and Postgraduate Academic Innovation Project of Anhui Province (2022xscx068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Shi.

Ethics declarations

Conflict of interest

This paper is original, and all authors agree with the submission and there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, X., Wang, J. et al. Investigation on Localized Etching Behaviors of Polymer Film by Atmospheric Pressure Plasma Jets. Plasma Chem Plasma Process 43, 679–696 (2023). https://doi.org/10.1007/s11090-023-10315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10315-0

Keywords

Navigation