Skip to main content
Log in

Cr(VI) Reduction by Microsecond Pin-to-Pin Discharges Generated in an Aqueous Solution

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The total reduction of Cr(VI) by microsecond pin-to-pin electric discharge generated in aqueous solution has been reported. [Cr(VI)] and [H2O2] were measured simultaneously by UV–Vis absorption spectroscopy during the process. The kinetics of the Cr(VI) reduction resulting from the discharges is found to be pseudo zero order rate. The influence of the electron properties has been studied by varying the applied voltage and the electrode gap showing a better reduction for a higher electric field. In addition pH and conductivity of the solution have been measured before and after the process. The analysis of the chemical kinetics has been completed by varying the pulse duration of the discharge. The results show that the reduction occurs both during the plasma and the post plasma phases. It is also noted that the increase of the pulse duration involves a better Cr(VI) reduction, a higher [H2O2] production and a more important change in conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vaiopoulou E, Gikas P (2020) Chemosphere 254:126876

    Article  CAS  Google Scholar 

  2. Tumolo M, Ancona V, De Paola D, Losacco D, Campanale C, Massarelli C, Uricchio VF (2020) IJERPH 17:5438

    Article  CAS  Google Scholar 

  3. Jin W, Du H, Yan K, Zheng S, Zhang Y (2016) J Electroanal Chem 775:325–328

    Article  CAS  Google Scholar 

  4. Prasad S, Yadav KK, Kumar S, Gupta N, Cabral-Pinto MMS, Rezania S, Radwan N, Alam J (2021) J Environ Manag 285:112174

    Article  CAS  Google Scholar 

  5. Kumar V, Dwivedi SK (2021) J Clean Prod 295:126229

    Article  CAS  Google Scholar 

  6. Wilbur SB, Henry A, Fay M et al (2012) Toxicological profile for chromium, Agency for Toxic Substances and Disease Registry (US), Atlanta (GA)

  7. Bobkova ES, Sungurova AV, Rybkin VV (2016) High Energy Chem 50:209–212

    Article  CAS  Google Scholar 

  8. Jamróz P, Gręda K, Pohl P, Żyrnicki W (2014) Plasma Chem Plasma Process 34:25–37

    Article  Google Scholar 

  9. Chen Z, Ponraj SB, Dai XJ (2017) Reduction of aqueous chromium(VI) by plasma treatment of wastewater. In: ISPC 23, Montréal, 2017

  10. Zhang C, Sun Y, Yu Z, Zhang G, Feng J (2018) Chemosphere 191:527–536

    Article  CAS  Google Scholar 

  11. Ke Z, Huang Q, Zhang H, Yu Z (2011) Environ Sci Technol 45:7841–7847

    Article  CAS  Google Scholar 

  12. Chandana L, Lakshminarayana B, Subrahmanyam C (2015) J Environ Chem Eng 3:2760–2767

    Article  CAS  Google Scholar 

  13. Du C, Yan J (2017) Plasma remediation technology for environmental protection. Springer, Singapore

    Book  Google Scholar 

  14. Jiang B, Guo J, Wang Z, Zheng X, Zheng J, Wu W, Wu M, Xue Q (2015) Chem Eng J 262:1144–1151

    Article  CAS  Google Scholar 

  15. Harianti AR, Saksono N (2017) AIP Conf Proc 1904:020041

    Article  Google Scholar 

  16. Wang Z, Bush RT, Sullivan LA, Liu J (2013) Environ Sci Technol 47:6486–6492

    Article  CAS  Google Scholar 

  17. Wang L, Jiang X (2008) Environ Sci Technol 42:8492–8497

    Article  CAS  Google Scholar 

  18. Shutov DA, Sungurova AV, Choukourov A, Rybkin VV (2016) Plasma Chem Plasma Process 36:1253–1269

    Article  CAS  Google Scholar 

  19. Joshi AA, Locke BR, Arce P, Finney WC (1995) J Hazard Mater 41:3–30

    Article  CAS  Google Scholar 

  20. Medodovic S, Locke BR (2009) J Phys D Appl Phys 42:049801

    Article  Google Scholar 

  21. Niekerk W, Pienaar J, Lachmann G, Eldik R, Hamza M (2007) Water SA. https://doi.org/10.4314/wsa.v33i5.184022

    Article  Google Scholar 

  22. Rond C, Desse JM, Fagnon N, Aubert X, Er M, Vega A, Duten X (2018) J Phys D Appl Phys 51:335201

    Article  Google Scholar 

  23. Nguyen TS, Rond C, Vega A, Duten X, Forget S (2020) Plasma Chem Plasma Process 40:955–969

    Article  CAS  Google Scholar 

  24. Rond C, Desse JM, Fagnon N, Aubert X, Vega A, Duten X (2019) J Phys D Appl Phys 52:025202

    Article  Google Scholar 

  25. Sanchez-Hachair A, Hofmann A (2018) C R Chim 21:890–896

    Article  CAS  Google Scholar 

  26. Vasko CA (2015) Microplasmas for gas phase hydrogen peroxide production. Technische Universiteit Eindhoven

  27. Petrucci RH, Harwood WS, Herring GF, Madura JD (2007) General chemistry: principles and modern applications. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  28. Watenphul A, Schmidt C, Jahn S (2014) Geochim Cosmochim Acta 126:212–227

    Article  CAS  Google Scholar 

  29. Liu F, Lu Y, Chen H, Liu Y (2002) Chem Speciat Bioavailab 14:75–77

    Article  CAS  Google Scholar 

  30. Pivovarov O, Derkach T, Skiba M (2019) Chem Chem Technol 13:317–325

    Article  CAS  Google Scholar 

  31. Itikawa Y (2005) J Phys Chem Ref Data 34(1):1–22

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work bearing the reference ANR-11-LABX-086 has benefited from State aid managed by the National Research Agency under the Future Investments program with the Reference Number ANR-18-IDEX-0001. The authors thank Benjamin Dufour for valuable discussions about the chemical activity of water.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rond.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 738 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.S., Fagnon, N., Vega, A. et al. Cr(VI) Reduction by Microsecond Pin-to-Pin Discharges Generated in an Aqueous Solution. Plasma Chem Plasma Process 42, 1279–1290 (2022). https://doi.org/10.1007/s11090-022-10281-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-022-10281-z

Keywords

Navigation