Skip to main content

Advertisement

Log in

Atmospheric Pressure Dielectric Barrier Discharges for the Deposition of Organic Plasma Polymer Coatings for Biomedical Application

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Atmospheric pressure dielectric barrier discharges (DBDs) are proving to have great potential in the bioengineering and medical field for functionalisation of biomaterials. The ability to operate in open atmosphere in a continuous process makes DBD a preferred method over conventional surface engineering techniques and low pressure plasma material processing. DBDs are characterised by configurations with a dielectric layer between conducting electrodes in the discharge path. The success in the application of DBDs in the modification of biomaterials has been demonstrated in many research articles. This review surveys DBD plasma-based methods for the production of organic polymer coatings on biomaterials that contain reactive chemical species useful for subsequent biomedical application. In the first part of this paper, a general introduction in the field of surface engineering will be given. The review then focuses on a brief overview of plasma-based deposition techniques including those of atmospheric plasmas. A brief knowledge of the operation and formation of DBDs are then presented. The application of DBDs for the deposition of coatings with different functionalities and for different biomedical applications are reviewed. The current challenges related to the discharge characteristics and thin organic coatings specific to stability and ageing processes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Martin PM (2009) Handbook of deposition technologies for films and coatings: science, applications and technology. William Andrew Publishing, Boston

    Google Scholar 

  2. Quirk RA, Chan WC, Davies MC, Tendler SJB, Shakesheff KM (2001) Poly(l-lysine)–GRGDS as a biomimetic surface modifier for poly(lactic acid). Biomaterials 22:865–872

    CAS  PubMed  Google Scholar 

  3. Siau S, Vervaet A, Van Calster A, Swennen I, Schacht E (2004) Influence of wet chemical treatments on the evolution of epoxy polymer layer surface roughness for use as a build-up layer. Appl Surf Sci 237:457–462

    Google Scholar 

  4. Mohammadi A, Hasan M-A, Liedberg B, Lundström I, Salaneck W (1986) Chemical vapour deposition (CVD) of conducting polymers: polypyrrole. Synth Met 14:189–197

    CAS  Google Scholar 

  5. Lahann J, Klee D, Höcker H (1998) Chemical vapour deposition polymerization of substituted [2.2] paracyclophanes. Macromol Rapid Commun 19:441–444

    CAS  Google Scholar 

  6. Farris S, Pozzoli S, Biagioni P, Duó L, Mancinelli S, Piergiovanni L (2010) The fundamentals of flame treatment for the surface activation of polyolefin polymers—a review. Polymer 51:3591–3605

    CAS  Google Scholar 

  7. Strobel MA, Kapaun RS, Lyons CS, Kirk SM (1999) Flame-treating process. Google Patents

  8. Liston E, Martinu L, Wertheimer M (1993) Plasma surface modification of polymers for improved adhesion: a critical review. J Adhes Sci Technol 7:1091–1127

    CAS  Google Scholar 

  9. Oehr C (2003) Plasma surface modification of polymers for biomedical use. Nucl Instrum Methods Phys Res Sect B 208:40–47

    CAS  Google Scholar 

  10. Faraday M (1857) X. The Bakerian Lecture—Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181

    Google Scholar 

  11. Schneider JM, Rohde S, Sproul WD, Matthews A (2000) Recent developments in plasma assisted physical vapour deposition. J Phys D Appl Phys 33:R173

    CAS  Google Scholar 

  12. Crowell JE (2003) Chemical methods of thin film deposition: chemical vapor deposition, atomic layer deposition, and related technologies. J Vac Sci Technol A Vac Surf Films 21:S88–S95

    CAS  Google Scholar 

  13. Suntola T, Antson J (1977) Method for producing compound thin films. Google Patents

  14. Jones AC, Hitchman ML (2008) Chapter 1. Overview of Chemical Vapour Deposition 1–36

  15. Hegemann D, Nisol B, Watson S, Wertheimer MR (2016) Energy conversion efficiency in plasma polymerization—a comparison of low-and atmospheric-pressure processes. Plasma Process Polym 13:834–842

    CAS  Google Scholar 

  16. Hamedani Y, Macha P, Bunning TJ, Naik RR, Vasudev MC (2016) Plasma-enhanced chemical vapor deposition: where we are and the outlook for the future. InTech, London

    Google Scholar 

  17. Michelmore A, Steele DA, Robinson DE, Whittle JD, Short RD (2013) The link between mechanisms of deposition and the physico-chemical properties of plasma polymer films. Soft Matter 9:6167–6175

    CAS  Google Scholar 

  18. Yasuda H, Hsu T (1978) Plasma polymerization investigated by the comparison of hydrocarbons and perfluorocarbons. Surf Sci 76:232–241

    CAS  Google Scholar 

  19. Thiry D, Konstantinidis S, Cornil J, Snyders R (2016) Plasma diagnostics for the low-pressure plasma polymerization process: a critical review. Thin Solid Films 606:19–44

    CAS  Google Scholar 

  20. Lei M, Liu Y, Li Y (2011) Controllable wettability of poly (ethylene terephthlate) film modified by oxygen combined inductively and capacitively coupled radio-frequency plasma. Appl Surf Sci 257:7350–7358

    CAS  Google Scholar 

  21. Al-Bataineh SA, Szili EJ, Mishra A, Park SJ, Eden JG, Griesser HJ, Voelcker NH, Short RD, Steele DA (2011) Design of a microplasma device for spatially localised plasma polymerisation. Plasma Process Polym 8:695–700

    CAS  Google Scholar 

  22. Whittle JD, Short RD, Steele DA, Bradley JW, Bryant PM, Jan F, Biederman H, Serov AA, Choukurov A, Hook AL (2013) Variability in plasma polymerization processes—an international round-robin study. Plasma Process Polym 10:767–778

    CAS  Google Scholar 

  23. Borcia G, Brown N (2007) Hydrophobic coatings on selected polymers in an atmospheric pressure dielectric barrier discharge. J Phys D Appl Phys 40:1927

    CAS  Google Scholar 

  24. Massines F, Sarra-Bournet C, Fanelli F, Naudé N, Gherardi N (2012) Atmospheric pressure low temperature direct plasma technology: status and challenges for thin film deposition. Plasma Process Polym 9:1041–1073

    CAS  Google Scholar 

  25. Merche D, Vandencasteele N, Reniers F (2012) Atmospheric plasmas for thin film deposition: a critical review. Thin Solid Films 520:4219–4236

    CAS  Google Scholar 

  26. Topala I, Asandulesa M, Dumitrascu N, Popa G, Durand J (2008) Application of dielectric barrier discharge for plasma polymerization processes. J Optoelectron Adv Mater 10:2028–2032

    CAS  Google Scholar 

  27. Park J, Henins I, Herrmann HW, Selwyn GS, Jeong JY, Hicks RF, Shim D, Chang CS (2000) An atmospheric pressure plasma source. Appl Phys Lett 76:288–290

    CAS  Google Scholar 

  28. Bogaerts A, Neyts E, Gijbels R, Van der Mullen J (2002) Gas discharge plasmas and their applications. Spectrochim Acta Part B 57:609–658

    Google Scholar 

  29. Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26:053001

    Google Scholar 

  30. Nehra V, Kumar A, Dwivedi H (2008) Atmospheric non-thermal plasma sources. Int J Eng 2:53–68

    Google Scholar 

  31. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    CAS  Google Scholar 

  32. Kogelschatz U, Eliasson B, Egli W (1999) From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Appl Chem 71:1819–1828

    CAS  Google Scholar 

  33. Gibalov VI, Pietsch GJ (2000) The development of dielectric barrier discharges in gas gaps and on surfaces. J Phys D Appl Phys 33:2618

    CAS  Google Scholar 

  34. Massines F, Rabehi A, Decomps P, Gadri RB, Ségur P, Mayoux C (1998) Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier. J Appl Phys 83:2950–2957

    CAS  Google Scholar 

  35. Massines F, Gherardi N, Fornelli A, Martin S (2005) Atmospheric pressure plasma deposition of thin films by Townsend dielectric barrier discharge. Surf Coat Technol 200:1855–1861

    CAS  Google Scholar 

  36. Gherardi N, Gouda G, Gat E, Ricard A, Massines F (2000) Transition from glow silent discharge to micro-discharges in nitrogen gas. Plasma Sources Sci Technol 9:340

    CAS  Google Scholar 

  37. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    CAS  PubMed  Google Scholar 

  38. Li D, Liu D, He T, Li Q, Wang X, Kong MG (2015) Three distinct modes in a surface micro-discharge in atmospheric pressure He + N2 mixtures. Phys Plasmas 22:123501

    Google Scholar 

  39. Von Keudell A, Schulz-Von Der Gathen V (2017) Foundations of low-temperature plasma physics—An introduction. Plasma Sources Sci Technol 26:113001

    Google Scholar 

  40. Jitsomboonmit P, Nisoa M, Dangtip S (2012) Experimental study of current-voltage characteristics and optical emission of various gases in dielectric barrier discharge at atmospheric pressure. Phys Procedia 32:723–731

    CAS  Google Scholar 

  41. Massines F, Segur P, Gherardi N, Khamphan C, Ricard A (2003) Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling. Surf Coat Technol 174:8–14

    Google Scholar 

  42. Golubovskii YB, Maiorov VA, Li P, Lindmayer M (2006) Effect of the barrier material in a Townsend barrier discharge in nitrogen at atmospheric pressure. J Phys D Appl Phys 39:1574–1583

    CAS  Google Scholar 

  43. Okazaki S, Kogoma M, Uehara M, Kimura Y (1993) Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. J Phys D Appl Phys 26:889–892

    CAS  Google Scholar 

  44. Weltmann KD, Kolb JF, Holub M, Uhrlandt D, Šimek M, Ostrikov K, Hamaguchi S, Cvelbar U, Černák M, Locke B (2019) The future for plasma science and technology. Plasma Process Polym 16:1800118

    Google Scholar 

  45. Valinčius V, Grigaitienė V, Tamošiūnas A (2012) Report on the different plasma modules for pollution removal. http://www.plastep.eu/fileadmin/dateien/Outputs/Report_on_the_different_Plasma_Modules_for_Pollution_Removal.pdf

  46. Donohoe KG, Wydeven T (1979) Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge. J Appl Polym Sci 23:2591–2601

    CAS  Google Scholar 

  47. Salge J (1996) Plasma-assisted deposition at atmospheric pressure. Surf Coat Technol 80:1–7

    CAS  Google Scholar 

  48. Chan KV, Onyshchenko I, Nikiforov A, Aziz G, Morent R, De Geyter N (2018) Plasma polymerization of cyclopropylamine with a sub-atmospheric pressure DBD. Eur Polym J 103:1–10

    CAS  Google Scholar 

  49. Mandracci P, Mussano F, Rivolo P, Carossa S (2016) Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings 6:7

    Google Scholar 

  50. Yasuda H, Bumgarner MO, Marsh HC, Morosoff N (1976) Plasma polymerization of some organic compounds and properties of the polymers. J Polym Sci Polym Chem Ed 14:195–224

    CAS  Google Scholar 

  51. Oh J-S, Bradley JW (2013) Heavy ion formation in plasma jet polymerization of heptylamine at atmospheric pressure. Plasma Process Polym 10:839–842

    CAS  Google Scholar 

  52. Choukourov A, Biederman H, Slavinska D, Hanley L, Grinevich A, Boldyryeva H, Mackova A (2005) Mechanistic studies of plasma polymerization of allylamine. J Phys Chem B 109:23086–23095

    CAS  PubMed  Google Scholar 

  53. Michelmore A, Martinek P, Sah V, Short RD, Vasilev K (2011) Surface morphology in the early stages of plasma polymer film growth from amine-containing monomers. Plasma Process Polym 8:367–372

    CAS  Google Scholar 

  54. Choukourov A, Biederman H, Kholodkov I, Slavinska D, Trchova M, Hollander A (2004) Properties of amine-containing coatings prepared by plasma polymerization. J Appl Polym Sci 92:979–990

    CAS  Google Scholar 

  55. Daunton C, Smith LE, Whittle JD, Short RD, Steele DA, Michelmore A (2015) Plasma parameter aspects in the fabrication of stable amine functionalized plasma polymer films. Plasma Process Polym 12:817–826

    CAS  Google Scholar 

  56. Gengenbach TR, JGH (1999) Aging of 1,3-diaminopropane plasma-deposited polymer films: mechanisms and reaction pathways. Polym Chem 16:2191–2206

  57. Truica-Marasescu F, Girard-Lauriault P-L, Lippitz A, Unger WE, Wertheimer MR (2008) Nitrogen-rich plasma polymers: comparison of films deposited in atmospheric-and low-pressure plasmas. Thin Solid Films 516:7406–7417

    CAS  Google Scholar 

  58. Lerouge S, Major A, Girault-Lauriault P-L, Raymond M-A, Laplante P, Soulez G, Mwale F, Wertheimer MR, Hébert M-J (2007) Nitrogen-rich coatings for promoting healing around stent-grafts after endovascular aneurysm repair. Biomaterials 28:1209–1217

    CAS  PubMed  Google Scholar 

  59. Girard-Lauriault PL, Mwale F, Iordanova M, Demers C, Desjardins P, Wertheimer MR (2005) Atmospheric pressure deposition of micropatterned nitrogen-rich plasma-polymer films for tissue engineering. Plasma Process Polym 2:263–270

    CAS  Google Scholar 

  60. Sarra-Bournet C, Gherardi N, Glénat H, Laroche G, Massines F (2010) Effect of C2 H4/N2 ratio in an atmospheric pressure dielectric barrier discharge on the plasma deposition of hydrogenated amorphous carbon-nitride films (aC:N:H). Plasma Chem Plasma Process 30:213–239

    CAS  Google Scholar 

  61. Aziz G, Thukkaram M, De Geyter N, Morent R (2017) Plasma parameters effects on the properties, aging and stability behaviors of allylamine plasma coated ultra-high molecular weight polyethylene (UHMWPE) films. Appl Surf Sci 409:381–395

    CAS  Google Scholar 

  62. Nakanishi K, Muguruma H, Karube I (1996) A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors. Anal Chem 68:1695–1700

    CAS  PubMed  Google Scholar 

  63. Lee S-D, Hsiue G-H, Chang PC-T, Kao C-Y (1996) Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials. Biomaterials 17:1599–1608

    CAS  PubMed  Google Scholar 

  64. Daw R, Candan S, Beck A, Devlin A, Brook I, MacNeil S, Dawson R, Short R (1998) Plasma copolymer surfaces of acrylic acid/1, 7 octadiene: surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells. Biomaterials 19:1717–1725

    CAS  PubMed  Google Scholar 

  65. Gupta B, Plummer C, Bisson I, Frey P, Hilborn J (2002) Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23:863–871

    CAS  PubMed  Google Scholar 

  66. Cools P, De Geyter N, Vanderleyden E, Barberis F, Dubruel P, Morent R (2016) Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization. Surf Coat Technol 294:201–209

    CAS  Google Scholar 

  67. Morent R, De Geyter N, Desmet T, Dubruel P, Leys C (2011) Plasma surface modification of biodegradable polymers: a review. Plasma Process Polym 8:171–190

    CAS  Google Scholar 

  68. Morent R, De Geyter N, Van Vlierberghe S, Vanderleyden E, Dubruel P, Leys C, Schacht E (2009) Deposition of polyacrylic acid films by means of an atmospheric pressure dielectric barrier discharge. Plasma Chem Plasma Process 29:103–117

    CAS  Google Scholar 

  69. Topala I, Dumitrascu N, Popa G (2009) Properties of the acrylic acid polymers obtained by atmospheric pressure plasma polymerization. Nucl Instrum Methods Phys Res Sect B 267:442–445

    CAS  Google Scholar 

  70. Cools P, Declercq H, De Geyter N, Morent R (2018) A stability study of plasma polymerized acrylic acid films. Appl Surf Sci 432:214–223

    CAS  Google Scholar 

  71. Ward L, Schofield W, Badyal J, Goodwin A, Merlin P (2003) Atmospheric pressure plasma deposition of structurally well-defined polyacrylic acid films. Chem Mater 15:1466–1469

    CAS  Google Scholar 

  72. Chen W-Y, Matthews A, Jones FR, Chen K-S (2018) Deposition of a stable and high concentration of carboxylic acid functional groups onto a silicon surface via a tailored remote atmospheric pressure plasma process. Surf Coat Technol 336:67–71

    CAS  Google Scholar 

  73. Nisol B, Ghesquière J, Reniers F (2016) Easy synthesis of ageing-resistant coatings with tunable wettability by atmospheric pressure plasma. Plasma Chem Plasma Process 36:1239–1252

    CAS  Google Scholar 

  74. Rezaei F, Shokri B, Sharifian M (2016) Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: a study on cell growth/proliferation and antibacterial properties. Appl Surf Sci 360:641–651

    CAS  Google Scholar 

  75. Amorosi C, Fouquet T, Toniazzo V, Ruch D, Averous L, Ball V, Michel M (2012) Growth rate, morphology, chemical composition and oligomerization state of plasma polymer films made from acrylic and methacrylic acid under dielectric barrier discharge. React Funct Polym 72:341–348

    CAS  Google Scholar 

  76. You Z, Cao H, Gao J, Shin PH, Day BW, Wang Y (2010) A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties. Biomaterials 31:3129–3138

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bhoj AN, Kushner MJ (2007) Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow. J Phys D Appl Phys 40:6953

    CAS  Google Scholar 

  78. Vesel A, Mozetic M (2012) Surface modification and ageing of PMMA polymer by oxygen plasma treatment. Vacuum 86:634–637

    CAS  Google Scholar 

  79. France RM, Short RD (1998) Plasma treatment of polymers: the effects of energy transfer from an argon plasma on the surface chemistry of polystyrene, and polypropylene. A high-energy resolution X-ray photoelectron spectroscopy study. Langmuir 14:4827–4835

    CAS  Google Scholar 

  80. Rivolo P, Severino SM, Ricciardi S, Frascella F, Geobaldo F (2014) Protein immobilization on nanoporous silicon functionalized by RF activated plasma polymerization of Acrylic Acid. J Colloid Interface Sci 416:73–80

    CAS  PubMed  Google Scholar 

  81. Farhat S, Gilliam M, Rabago-Smith M, Baran C, Walter N, Zand A (2014) Polymer coatings for biomedical applications using atmospheric pressure plasma. Surf Coat Technol 241:123–129

    CAS  Google Scholar 

  82. Yang YW, Camporeale G, Sardella E, Dilecce G, Wu JS, Palumbo F, Favia P (2014) Deposition of hydroxyl functionalized films by means of water aerosol-assisted atmospheric pressure plasma. Plasma Process Polym 11:1102–1111

    CAS  Google Scholar 

  83. Klages C-P, Höpfner K, Kläke N, Thyen R (2000) Surface functionalization at atmospheric pressure by DBD-based pulsed plasma polymerization. Plasmas Polym 5:79–89

    CAS  Google Scholar 

  84. Coad BR, Jasieniak M, Griesser SS, Griesser HJ (2013) Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf Coat Technol 233:169–177

    CAS  Google Scholar 

  85. Thierry B, Jasieniak M, de Smet LC, Vasilev K, Griesser HJ (2008) Reactive epoxy-functionalized thin films by a pulsed plasma polymerization process. Langmuir 24:10187–10195

    CAS  PubMed  Google Scholar 

  86. Harris LG, Schofield WCE, Badyal JPS (2007) Multifunctional molecular scratchcards. Chem Mater 19:1546–1551

    CAS  Google Scholar 

  87. Camporeale G, Moreno-Couranjou M, Bonot S, Mauchauffé R, Boscher ND, Bebrone C, Van de Weerdt C, Cauchie HM, Favia P, Choquet P (2015) Atmospheric-pressure plasma deposited epoxy-rich thin films as platforms for biomolecule immobilization—application for anti-biofouling and Xenobiotic-degrading surfaces. Plasma Process Polym 12:1208–1219

    CAS  Google Scholar 

  88. Bonot S, Mauchauffé R, Boscher ND, Moreno-Couranjou M, Cauchie HM, Choquet P (2015) Self-defensive coating for antibiotics degradation—atmospheric pressure chemical vapor deposition of functional and conformal coatings for the immobilization of enzymes. Adv Mater Interfaces 2:1500253

    Google Scholar 

  89. Manakhov A, Moreno-Couranjou M, Boscher ND, Rogé V, Choquet P, Pireaux JJ (2012) Atmospheric pressure pulsed plasma copolymerisation of maleic anhydride and vinyltrimethoxysilane: influence of electrical parameters on chemistry, morphology and deposition rate of the coatings. Plasma Process Polym 9:435–445

    CAS  Google Scholar 

  90. Geßner C, Bartels V, Betker T, Matucha U, Penache C, Klages C-P (2004) Surface modification for biomedical purposes utilizing dielectric barrier discharges at atmospheric pressure. Thin Solid Films 459:118–121

    Google Scholar 

  91. Kozlov K, Wagner H, Brandenburg R, Michel P (2001) Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure. J Phys D Appl Phys 34:3164

    CAS  Google Scholar 

  92. Reitz U, Salge J, Schwarz R (1993) Pulsed barrier discharges for thin film production at atmospheric pressure. Surf Coat Technol 59:144–147

    CAS  Google Scholar 

  93. Massines FMC, Messaoudi R, Rabehi A, Segur P (1992) Experimental study of an atmospheric pressure glow discharge: application to polymers surface treatment. In: International conference on gas discharges and their applications 730

  94. Fanelli F (2010) Thin film deposition and surface modification with atmospheric pressure dielectric barrier discharges. Surf Coat Technol 205:1536–1543

    CAS  Google Scholar 

  95. Goossens O, Dekempeneer E, Vangeneugden D, Van de Leest R, Leys C (2001) Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation. Surf Coat Technol 142:474–481

    Google Scholar 

  96. Morent R, De Geyter N, Van Vlierberghe S, Beaurain A, Dubruel P, Payen E (2011) Influence of operating parameters on plasma polymerization of acrylic acid in a mesh-to-plate dielectric barrier discharge. Prog Org Coat 70:336–341

    CAS  Google Scholar 

  97. Trunec D, Navrátil Z, Stahel P, Zají ková L, Bur íková V, Cech J (2004) Deposition of thin organosilicon polymer films in atmospheric pressure glow discharge. J Phys D Appl Phys 37:2112–2120

    CAS  Google Scholar 

  98. Jiang N, Qian SF, Wang L, Zhang HX (2001) Localized material growth by a dielectric barrier discharge. Thin Solid Films 390:119–122

    CAS  Google Scholar 

  99. Neiswender DD (1967) Polymerization of benzene in a radio-frequency discharge. Am Chem Soc, Div. Fuel Chem Prepr (United States) 11

  100. Yasuda HK (2012) Plasma polymerization. Academic Press, London

    Google Scholar 

  101. Hegemann D, Körner E, Blanchard N, Drabik M, Guimond S (2012) Densification of functional plasma polymers by momentum transfer during film growth. Appl Phys Lett 101:211603

    Google Scholar 

  102. Heyse P, Dams R, Paulussen S, Houthoofd K, Janssen K, Jacobs PA, Sels BF (2007) Dielectric barrier discharge at atmospheric pressure as a tool to deposit versatile organic coatings at moderate power input. Plasma Process Polym 4:145–157

    CAS  Google Scholar 

  103. Bitar R, Cools P, De Geyter N, Morent R (2018) Acrylic acid plasma polymerization for biomedical use. Appl Surf Sci 448:168–185

    CAS  Google Scholar 

  104. Alexandrov SE, Hitchman ML (2005) Chemical vapor deposition enhanced by atmospheric pressure non-thermal non-equilibrium plasmas. Chem Vap Depos 11:457–468

    CAS  Google Scholar 

  105. Molina R, Teixidó JM, Kan C-W, Jovančić P (2017) Hydrophobic coatings on cotton obtained by in situ plasma polymerization of a fluorinated monomer in ethanol solutions. ACS Appl Mater Interfaces 9:5513–5521

    CAS  PubMed  Google Scholar 

  106. Vinogradov I, Lunk A (2005) Spectroscopic diagnostics of DBD in Ar/fluorocarbon mixtures–correlation between plasma parameters and properties of deposited polymer films. Plasma Process Polym 2:201–208

    CAS  Google Scholar 

  107. Dubreuil M, Bongaers E, Lens P (2011) Incorporation of amino moieties through atmospheric pressure plasma: relationship between precursor structure and coating properties. Surf Coat Technol 206:1439–1448

    CAS  Google Scholar 

  108. Beck AJ, Candan S, Short RD, Goodyear A, Braithwaite NSJ (2001) The role of ions in the plasma polymerization of allylamine. J Phys Chem B 105:5730–5736

    CAS  Google Scholar 

  109. Heyse P, Roeffaers MB, Paulussen S, Hofkens J, Jacobs PA, Sels BF (2008) Protein immobilization using atmospheric-pressure dielectric-barrier discharges: a route to a straightforward manufacture of bioactive films. Plasma Process Polym 5:186–191

    CAS  Google Scholar 

  110. Hody H, Choquet P, Moreno-Couranjou M, Maurau R, Pireaux JJ (2010) Optimization of carboxyl surface functionalization by MA-VTMS copolymerization using atmospheric pressure plasma DBD: influence of the carrier gas. Plasma Process Polym 7:403–410

    CAS  Google Scholar 

  111. Naude N, Massines F (2008) Influence of the surface conductivity on the stability of a glow dielectric-barrier discharge. IEEE Trans Plasma Sci 36:1322

    CAS  Google Scholar 

  112. Fanelli F, Fracassi F, d’Agostino R (2007) Atmospheric pressure PECVD of fluorocarbon coatings from glow dielectric barrier discharges. Plasma Process Polym 4:S430–S434

    Google Scholar 

  113. Vasilev K, Poh Z, Kant K, Chan J, Michelmore A, Losic D (2010) Tailoring the surface functionalities of titania nanotube arrays. Biomaterials 31:532–540

    CAS  PubMed  Google Scholar 

  114. Scheltjens G, Van Assche G, Van Mele B (2017) Effect of substrate temperature on thermal properties and deposition kinetics of atmospheric plasma deposited methyl (methacrylate) films. Plasma Process Polym 14:1500213

    Google Scholar 

  115. Bashir M, Rees JM, Zimmerman WB (2013) Plasma polymerization in a microcapillary using an atmospheric pressure dielectric barrier discharge. Surf Coat Technol 234:82–91

    CAS  Google Scholar 

  116. Ruiz JC, St-Georges-Robillard A, Thérésy C, Lerouge S, Wertheimer MR (2010) Fabrication and characterisation of amine-rich organic thin films: focus on stability. Plasma Process Polym 7:737–753

    CAS  Google Scholar 

  117. Girard-Lauriault PL, Desjardins P, Unger WE, Lippitz A, Wertheimer MR (2008) Chemical characterisation of nitrogen-rich plasma-polymer films deposited in dielectric barrier discharges at atmospheric pressure. Plasma Process Polym 5:631–644

    CAS  Google Scholar 

  118. Fricke K, Girard-Lauriault P-L, Weltmann K-D, Wertheimer MR (2016) Plasma polymers deposited in atmospheric pressure dielectric barrier discharges: influence of process parameters on film properties. Thin Solid Films 603:119–125

    CAS  Google Scholar 

  119. Morent R, De Geyter N, Trentesaux M, Gengembre L, Dubruel P, Leys C, Payen E (2010) Stability study of polyacrylic acid films plasma-polymerized on polypropylene substrates at medium pressure. Appl Surf Sci 257:372–380

    CAS  Google Scholar 

  120. Goossens O, Paulussen S, Vangeneugden D, Vrielinck H, Callens F, Leys C, Meneve J (2003) Physical and chemical properties of thin films obtained by plasma polymerisation in a dielectric barrier discharge. New Diam Front Carbon Technol 13:221–229

    CAS  Google Scholar 

  121. Vandenbossche M, Hegemann D (2018) Recent approaches to reduce aging phenomena in oxygen-and nitrogen-containing plasma polymer films: An overview Curr. Opin. Solid State Mater, Sci

    Google Scholar 

  122. Finke B, Schröder K, Ohl A (2009) Structure retention and water stability of microwave plasma polymerized films from allylamine and acrylic acid. Plasma Process Polym 6:S70–S74

    CAS  Google Scholar 

  123. Dorst J, Vandenbossche M, Amberg M, Bernard L, Rupper P, Weltmann KD, Fricke K, Hegemann D (2017) Improving the stability of amino-containing plasma polymer films in aqueous environments. Langmuir 33:10736–10744

    CAS  PubMed  Google Scholar 

  124. Lerouge S, Barrette J, Ruiz JC, Sbai M, Savoji H, Saoudi B, Gauthier M, Wertheimer MR (2015) Nitrogen-rich plasma polymer coatings for biomedical applications: stability, mechanical properties and adhesion under dry and wet conditions. Plasma Process Polym 12:882–895

    CAS  Google Scholar 

  125. Rinsch CL, Chen X, Panchalingam V, Eberhart RC, Wang J-H, Timmons RB (1996) Pulsed radio frequency plasma polymerization of allyl alcohol: controlled deposition of surface hydroxyl groups. Langmuir 12:2995–3002

    CAS  Google Scholar 

  126. Poncin-Epaillard F, Vrlinic T, Debarnot D, Mozetic M, Coudreuse A, Legeay G, El Moualij B, Zorzi W (2012) Surface treatment of polymeric materials controlling the adhesion of biomolecules. J Funct Biomater 3:528–543

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Siow KS, Britcher L, Kumar S, Griesser HJ (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—a review. Plasma Process Polym 3:392–418

    CAS  Google Scholar 

  128. Nakamatsu J, Delgado-Aparicio LF, Da Silva R, Soberon F (1999) Ageing of plasma-treated poly(tetrafluoroethylene) surfaces. J Adhes Sci Technol 13:753–761

    CAS  Google Scholar 

  129. Dupont-Gillain CC, Adriaensen Y, Derclaye S, Rouxhet PG (2000) Plasma-oxidized polystyrene: wetting properties and surface reconstruction. Langmuir 16:8194–8200

    CAS  Google Scholar 

  130. Yun YI, Kim KS, Uhm S-J, Khatua BB, Cho K, Kim JK, Park CE (2004) Aging behavior of oxygen plasma-treated polypropylene with different crystallinities. J Adhes Sci Technol 18:1279–1291

    CAS  Google Scholar 

  131. Gengenbach TR, Vasic ZR, Li S, Chatelier RC, Griesser HJ (1997) Contributions of restructuring and oxidation to the aging of the surface of plasma polymers containing heteroatoms. Plasmas Polym 2:91–114

    CAS  Google Scholar 

  132. Gengenbach TR, Vasic ZR, Chatelier RC, Griesser HJ (1994) A multi-technique study of the spontaneous oxidation of N-hexane plasma polymers. J Polym Sci Part A: Polym Chem 32:1399–1414

    CAS  Google Scholar 

  133. Gengenbach TR, Chatelier RC, Griesser HJ (1996) Correlation of the nitrogen 1 s and oxygen 1 s XPS binding energies with compositional changes during oxidation of ethylene diamine plasma polymers. Surf Interface Anal 24:611–619

    CAS  Google Scholar 

  134. Whittle JD, Short R, Douglas C, Davies J (2000) Differences in the aging of allyl alcohol, acrylic acid, allylamine, and octa-1, 7-diene plasma polymers as studied by X-ray photoelectron spectroscopy. Chem Mater 12:2664–2671

    CAS  Google Scholar 

  135. Swaraj S, Oran U, Lippitz A, Friedrich JF, Unger WE (2007) Aging of plasma-deposited films prepared from organic monomers. Plasma Process Polym 4:S784–S789

    Google Scholar 

  136. Swaraj S, Oran U, Lippitz A, Friedrich JF, Unger WES (2005) Study of influence of external plasma parameters on plasma polymerised films prepared from organic molecules (acrylic acid, allyl alcohol, allyl amine) using XPS and NEXAFS. Surf Coat Technol 200:494–497

    CAS  Google Scholar 

  137. Holländer A, Thome J, Keusgen M, Degener I, Klein W (2004) Polymer surface chemistry for biologically active materials. Appl Surf Sci 235:145–150

    Google Scholar 

  138. Favia P, Creatore M, Palumbo F, Colaprico V, d’Agostino R (2001) Process control for plasma processing of polymers. Surf Coat Technol 142:1–6

    Google Scholar 

  139. Golub MA, Wydeven T, Cormia RD (1991) ESCA study of the effect of hydrocarbon contamination on poly (tetrafluoroethylene) exposed to atomic oxygen plasma. Langmuir 7:1026–1028

    CAS  Google Scholar 

  140. Gigout A, Ruiz JC, Wertheimer MR, Jolicoeur M, Lerouge S (2011) Nitrogen-rich plasma-polymerized coatings on PET and PTFE surfaces improve endothelial cell attachment and resistance to shear flow. Macromol Biosci 11:1110–1119

    CAS  PubMed  Google Scholar 

  141. Van Vrekhem S, Cools P, Declercq H, Van Tongel A, Vercruysse C, Cornelissen M, De Geyter N, Morent R (2015) Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion. Thin Solid Films 596:256–263

    Google Scholar 

  142. Mwale F, Girard-Lauriault P-L, Wang HT, Lerouge S, Antoniou J, Wertheimer MR (2006) Suppression of genes related to hypertrophy and osteogenesis in committed human mesenchymal stem cells cultured on novel nitrogen-rich plasma polymer coatings. Tissue Eng 12:2639–2647

    CAS  PubMed  Google Scholar 

  143. Egghe T, Cools P, Van Guyse JF, Asadian M, Khalenkow D, Nikiforov A, Declercq H, Skirtach AG, Morent R, Hoogenboom R (2019) Water-stable plasma-polymerized N,N-dimethylacrylamide coatings to control cellular adhesion. ACS Appl Mater Interfaces 12:2116–2128

    PubMed  Google Scholar 

  144. Lehocký M, Amaral P, Sťahel P, Coelho M, Barros-Timmons A, Coutinho J (2008) Deposition of Yarrowia lipolytica on plasma prepared teflonlike thin films. Surf Eng 24:23–27

    Google Scholar 

  145. Nisol B, Oldenhove G, Preyat N, Monteyne D, Moser M, Perez-Morga D, Reniers F (2014) Atmospheric plasma synthesized PEG coatings: non-fouling biomaterials showing protein and cell repulsion. Surf Coat Technol 252:126–133

    CAS  Google Scholar 

  146. Sarghini S, Paulussen S, Terryn H (2011) Atmospheric pressure plasma technology: a straightforward deposition of antibacterial coatings. Plasma Process Polym 8:59–69

    CAS  Google Scholar 

  147. Chen G, Zhou M, Chen S, Lv G, Yao J (2009) Nanolayer biofilm coated on magnetic nanoparticles by using a dielectric barrier discharge glow plasma fluidized bed for immobilizing an antimicrobial peptide. Nanotechnology 20:465706

    PubMed  Google Scholar 

  148. Czuba U, Quintana R, Lassaux P, Bombera R, Ceccone G, Bañuls-Ciscar J, Moreno-Couranjou M, Detrembleur C, Choquet P (2019) Anti-biofouling activity of Ranaspumin-2 bio-surfactant immobilized on catechol-functional PMMA thin layers prepared by atmospheric plasma deposition. Colloids Surf B 178:120–128

    CAS  Google Scholar 

  149. Palumbo F, Treglia A, Lo Porto C, Fracassi F, Baruzzi F, Frache G, El Assad D, Pistillo BR, Favia P (2018) Plasma-deposited nanocapsules containing coatings for drug delivery applications. ACS Appl Mater Interfaces 10:35516–35525

    CAS  PubMed  Google Scholar 

  150. Yim JH, Fleischman MS, Rodriguez-Santiago V, Piehler LT, Williams AA, Leadore JL, Pappas DD (2013) Development of antimicrobial coatings by atmospheric pressure plasma using a guanidine-based precursor. ACS Appl Mater Interfaces 5:11836–11843

    CAS  PubMed  Google Scholar 

  151. Palumbo F, Camporeale G, Yang YW, Wu JS, Sardella E, Dilecce G, Calvano CD, Quintieri L, Caputo L, Baruzzi F (2015) Direct plasma deposition of lysozyme-embedded bio-composite thin films. Plasma Process Polym 12:1302–1310

    CAS  Google Scholar 

  152. Hsiao C-P, Wu C-C, Liu Y-H, Yang Y-W, Cheng Y-C, Palumbo F, Camporeale G, Favia P, Wu J-S (2016) Aerosol-assisted plasma deposition of biocomposite coatings: investigation of processing conditions on coating properties. IEEE Trans Plasma Sci 44:3091–3098

    CAS  Google Scholar 

  153. Da Ponte G, Sardella E, Fanelli F, Paulussen S, Favia P (2014) Atmospheric pressure plasma deposition of poly lactic acid-like coatings with embedded elastin. Plasma Process Polym 11:345–352

    Google Scholar 

  154. Amorosi C, Ball V, Bour J, Bertani P, Toniazzo V, Ruch D, Averous L, Michel M (2012) One step preparation of plasma based polymer films for drug release. Mater Sci Eng C 32:2103–2108

    CAS  Google Scholar 

  155. Ramkumar MC, Navaneetha Pandiyaraj K, Arun Kumar A, Padmanabhan PVA, Cools P, De Geyter N, Morent R, Uday Kumar S, Kumar V, Gopinath P, Jaganathan SK, Deshmukh RR (2017) Atmospheric pressure non-thermal plasma assisted polymerization of poly (ethylene glycol) methylether methacrylate (PEGMA) on low density polyethylene (LDPE) films for enhancement of biocompatibility. Surf Coat Technol 329:55–67

    CAS  Google Scholar 

  156. Liu YH, Yang CH, Lin TR, Cheng YC (2018) Using aerosol-assisted atmospheric-pressure plasma to embed proteins onto a substrate in one step for biosensor fabrication. Plasma Process Polym 15:1800001

    Google Scholar 

  157. Mertz G, Fouquet T, Becker C, Ziarelli F, Ruch D (2014) A methacrylic anhydride difunctional precursor to produce a hydrolysis-sensitive coating by aerosol-assisted atmospheric plasma process. Plasma Process Polym 11:728–733

    CAS  Google Scholar 

  158. Steele JG, Johnson G, Griesser HJ, Underwood PA (1997) Mechanism of initial attachment of corneal epithelial cells to polymeric surfaces. Biomaterials 18:1541–1551

    CAS  PubMed  Google Scholar 

  159. Girard-Lauriault PL, Truica-Marasescu F, Petit A, Wang HT, Desjardins P, Antoniou J, Mwale F, Wertheimer MR (2009) Adhesion of human U937 monocytes to nitrogen-rich organic thin films: novel insights into the mechanism of cellular adhesion. Macromol Biosci 9:911–921

    CAS  PubMed  Google Scholar 

  160. Babaei S, Girard-Lauriault P-L (2016) Tuning the surface properties of oxygen-rich and nitrogen-rich plasma polymers: functional groups and surface charge. Plasma Chem Plasma Process 36:651–666

    CAS  Google Scholar 

  161. Hernández-Orta M, Pérez E, Cruz-Barba LE, Sánchez-Castillo MA (2018) Synthesis of bactericidal polymer coatings by sequential plasma-induced polymerization of 4-vinyl pyridine and gas-phase quaternization of poly-4-vinyl pyridine. J Mater Sci 53:8766–8785

    Google Scholar 

  162. Pignatelli D, Sardella E, Palumbo F, Lo Porto C, Taccola S, Greco F, Mattoli V, Favia P (2016) Plasma assisted deposition of free-standing nanofilms for biomedical applications. Plasma Process Polym 13:1224–1229

    CAS  Google Scholar 

  163. Mertz G, Fouquet T, Ahrach HIE, Becker C, Phan TN, Ziarelli F, Gigmes D, Ruch D (2015) Water sensitive coatings deposited by aerosol assisted atmospheric plasma process: tailoring the hydrolysis rate by the precursor chemistry. Plasma Process Polym 12:1293–1301

    CAS  Google Scholar 

  164. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    CAS  Google Scholar 

Download references

Acknowledgements

This review was conducted under the support of the Future Industries Institute, University of South Australia and the Cooperative Research Center for Cell Therapy Manufacturing (CRC-CTM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason D. Whittle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, J., Al-Bataineh, S.A., Michelmore, A. et al. Atmospheric Pressure Dielectric Barrier Discharges for the Deposition of Organic Plasma Polymer Coatings for Biomedical Application. Plasma Chem Plasma Process 41, 47–83 (2021). https://doi.org/10.1007/s11090-020-10135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10135-6

Keywords

Navigation