Skip to main content
Log in

Molecular Species Generated by Surface Dielectric Barrier Discharge Micro-plasma in Small Chambers Enclosing Atmospheric Air and Water Samples

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In many applications of the atmospheric pressure plasmas, the plasma is generated in chambers that enclose samples to be treated. In the case of plasma treatments of water or water-containing materials, the humidity in gaseous medium rises during the treatment, and this affects considerably the plasma generation of reactive oxygen and nitrogen species (RONS). In this study, Fourier transform infrared absorption spectroscopy is used to investigate the kinetics of reactive species generated by surface dielectric barrier (SDBD) micro-plasma in a small volume of atmospheric air (0.5 L) enclosed in a discharge chamber. The investigations were made for dry air (in absence of liquid water) and for humid air in presence of liquid water. The SDBD plasma contributes to desorption of water from the inner wall of the discharge chamber and enhances evaporation of liquid water, which increases air humidity and decreases the generation rates of reactive species. Kinetics of RONS generated in small samples of liquid water in contact with discharge medium is investigated by ex situ UV absorption spectroscopy measurements of plasma treated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Seker E, Kilicarslan MA, Deniz ST, Mumcu E, Ozkan P (2015) Effect of atmospheric plasma versus conventional surface treatments on the adhesion capability between self-adhesive resin cement and titanium surface. J Adv Prosthodont 7(3):249–256

    Article  Google Scholar 

  2. Moreau M, Orange N, Feuilloley MGJ (2008) Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv 26:610–617

    Article  CAS  Google Scholar 

  3. Greg Fridman, Gary Friedman, Gutsol AF, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Process Polym 5(6):503–533

    Article  Google Scholar 

  4. Bernhardt T, Semmler M L, Schäfer M, Bekeschus S, Emmert S, Boeckmann L (2019) Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxidat Med Cell Longev 3873928

  5. Zhang H, Xu Z, Shen J, Li X, Ding L, Ma J, Lan Y, Xia W, Cheng Ch, Sun Q, Zhang Z, Chu PK (2015) Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme. Sci Rep 5:10031

    Article  Google Scholar 

  6. Kojtari A, Ercan UK, Smith J, Friedman G, Sensenig RB, Tyagi S, Joshi SG, Ji H-F, Brooks AD (2013) Chemistry for antimicrobial properties of water treated with non-equilibrium plasma. J Nanomed Biother Discov 4:1

    Google Scholar 

  7. Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26:053001

    Article  Google Scholar 

  8. Kristof J, Aoshima T, Blajan M, Shimizu K (2019) Surface modification of stratum corneum for drug delivery and skin care by microplasma discharge treatment. Plasma Sci Technol 21(6):064001

    Article  CAS  Google Scholar 

  9. Malik MA, Schoenbach KH, Heller R (2014) Coupled surface dielectric barrier discharge reactor-ozone synthesis and nitric oxide conversion from air. Chem Eng J 256:222–229

    Article  CAS  Google Scholar 

  10. Dascalu A, Demeter A, Samoila F, Anita V, Shimizu K, Sirghi L (2017) Surface dielectric barrier discharge in closed volume air. Plasma Med 7(4):395–406

    Article  Google Scholar 

  11. Bruggeman PJ, Kushner MJ, Locke BR, Gardeniers JGE, Graham WG, Graves DB, Hofman-Caris RCHM, Maric D, Reid JP, Ceriani E, Fernandez Rivas D, Foster JE, Garrick SC, Gorbanev Y, Hamaguchi S, Iza F, Jablonowski H, Klimova E, Kolb J, Krcma F, Lukes P, Machala Z, Marinov I, Mariotti D, Mededovic Thagard S, Minakata D, Neyts EC, Pawlat J, Lj Petrovic Z, Pflieger R, Reuter S, Schram DC, Schröter S, Shiraiwa M, Tarabová B, Tsai PA, Verlet JRR, von Woedtke T, Wilson KR, Yasui K, Zvereva G (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002

    Article  Google Scholar 

  12. Traylor MJ, Pavlovich MJ, Karim S, Hait P, Sakiyama Y, Clark DS, Graves DB (2011) Long-term antibacterial efficacy of air plasma-activated wáter. J Phys D Appl Phys 44:472001

    Article  Google Scholar 

  13. Zhang X, Liu D, Zhou R, Song Y, Sun Y, Zhang Q, Niu J, Fan H, Yang S-z (2014) Atmospheric cold plasma jet for plant disease treatment. Appl Phys Lett 104(4):043702

    Article  Google Scholar 

  14. Zhang X, Lee BJ, Im HG, Cha MS (2016) Ozone production with dielectric barrier discharge: effects of power source and humidity. IEEE Trans Plasma Sci 44(10):2288

    Article  CAS  Google Scholar 

  15. Abdelaziz AA, Ishijima T, Seto T (2018) Humidity effects on surface dielectric barrier discharge for gaseous naphthalene decomposition. Phys Plasmas 25:043512

    Article  Google Scholar 

  16. Tianpeng MA, Zhao Q, Liu J, Zhong F (2016) Study of humidity effect on benzene decomposition by the DBD NTP reactor. Plasma Sci Technol 18:686

    Article  Google Scholar 

  17. Kikuchi Y, Miyamae M, Nagata M, Fukumoto N (2011) Effects of environmental humidity and temperature on sterilization efficiency of dielectric barrier discharge plasmas in atmospheric pressure air. Jpn J Appl Phys 50:01AH03

    Article  Google Scholar 

  18. Deng J, He L, Zhao B, Chen Q (2020) Effects of air relative humidity on spectral characteristics of dielectric barrier discharge plasma assisted combustion reactor. Vacuum 175:109189

    Article  CAS  Google Scholar 

  19. Tian W, Kushner MJ (2014) Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue. J Phys D Appl Phys 47:165201

    Article  Google Scholar 

  20. Liu Z, Zhou Ch, Liu D, He T, Guo L, Xu D, Kong MG (2019) Quantifying the concentration and penetration depth of long-lived RONS in plasma-activated water by UV absorption spectroscopy. AIP Adv 9:015014

    Article  Google Scholar 

  21. Ivanov AV, Trakhtenberg S, Bertram AK, Gershenzon YM, Molina MJ (2007) OH, HO2, and ozone gaseous diffusion coefficients. J Phys Chem A 111:1632–1637

    Article  CAS  Google Scholar 

  22. KogelSchatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air: discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–378

    Article  CAS  Google Scholar 

  23. Skalny JD, Orszagh J, Matejcik S, Mason NJ (2008) Ozone generation in positive and negative corona discharge fed by humid oxygen and carbon dioxide. Phys Scr 131:014012

    Article  Google Scholar 

  24. Shimizu K, Kuwabara T, Blajan M (2012) Study on decomposition of indoor air contaminants by pulsed atmospheric microplasma. Sensors 12:14525–14536

    Article  CAS  Google Scholar 

  25. Orszagh J, Skalny JD, Mason NJ (2007) Ozone formation in a coaxial DC Corona discharge under carbon dioxide gas flow. Plasma Process Polym 4:694–700

    Article  CAS  Google Scholar 

  26. Yamamoto T, Tanioka G, Okubo M, Kuroki T (2007) Water vapor desorption and adsorbent regeneration for air conditioning unit using pulsed corona plasma. J Electrostat 65:221–227

    Article  CAS  Google Scholar 

  27. Fouad L, Elhazek S (1995) Effect of humidity on positive corona discharge in a three electrode system. J Electrostat 35:21–30

    Article  Google Scholar 

  28. Ozkan A, Dufour T, Bogaerts A, Reniers F (2016) How do the barrier thickness and dielectric material influence the filamentary mode and CO2 conversion in a flowing DBD? Plasma Sources Sci Technol 25:045016

    Article  Google Scholar 

  29. Xu G, Zhang W, Wang N, Wang G, Yuan Sh (2020) Impedance matching study of surface dielectric barrier discharge plasma generator. Energy Rep 6:276–281

    Article  Google Scholar 

  30. El Shaer M, Mobasher M, Zaki A (2015) Effect of flowing mist relative humidity on the electric characteristics of helium dielectric barrier discharge. Plasma Med 5:249–256

    Article  Google Scholar 

  31. Kriegseis J, Möller B, Grundmann S, Tropea C (2011) Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J Electrostat 69:302–312

    Article  Google Scholar 

  32. Leonov SB, Adamovich IV, Soloviev VR (2016) Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow. Plasma Sources Sci Technol 25:063001

    Article  Google Scholar 

  33. Popa SD (1996) Vibrational distributions in a flowing nitrogen glow dischargeJ. Phys D Appl Phys 29:411–415

    Article  CAS  Google Scholar 

  34. Lofthus A, Krupenie PH (1977) The spectrum of molecular nitrogen. J Phys Chem Ref Data 6:113–307

    Article  CAS  Google Scholar 

  35. Al-Abduly A, Christensen P (2015) An in situ and downstream study of non-thermal plasma chemistry in an air fed dielectric barrier discharge (DBD). Plasma Sources Sci Technol 24:065006

    Article  Google Scholar 

  36. da Silveira Petruci J F, Regina Fortes P, Kokoric V, Wilk A, Raimundo IM Jr, Cardoso AA, Mizaikoff B (2013) Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors. Sci Rep 3:3174

    Article  Google Scholar 

  37. Cantrell CA, Davidson JA, Sbetter RE, Anderson BA, Calvert JG (1987) Reactions of NO3 and N2O5 with molecular species of possible atmospheric interest. J Phys Chem 91:6017–6021

    Article  CAS  Google Scholar 

  38. Haridassa C, Aw-Mussea A, Misraa P, Jordan J (2000) Fourier Transform infrared (FT-IR) spectroscopy of trace molecular species of importance for the elucidation of atmospheric phenomena. Comput Electr Eng 26: 47-65 NIST Chemistry WebBook, SRD 69 (2018) Available at https://webbook.nist.gov/chemistry/

  39. Malik MA (2016) Nitric oxide production by high voltage electrical discharges for medical uses: a review. Plasma Chem Plasma Process 36:737–766

    Article  CAS  Google Scholar 

  40. Hoeben WF, van Ooij PP, Schram DC, Huiskamp T, Pemen AJM, Lukeš P (2019) On the possibilities of straightforward characterization of plasma activated water. Plasma Chem Plasma Process 39:597–626

    Article  CAS  Google Scholar 

  41. Heirman P, Van Boxem W, Bogaerts A (2019) Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered wáter solution: a computational study. Phys Chem Chem Phys 21:12881–12894

    Article  CAS  Google Scholar 

  42. Turney DE, Banerjee S (2013) Air–water gas transfer and near-surface motions. J Fluid Mech 733:588–624

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sirghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1828 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dascalu, A., Pohoata, V., Shimizu, K. et al. Molecular Species Generated by Surface Dielectric Barrier Discharge Micro-plasma in Small Chambers Enclosing Atmospheric Air and Water Samples. Plasma Chem Plasma Process 41, 389–408 (2021). https://doi.org/10.1007/s11090-020-10122-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10122-x

Keywords

Navigation