Skip to main content

Advertisement

Log in

Theoretical Kinetics Investigation of Krypton Dielectric Barrier Discharge for UV Lamp

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This work presents an electric and kinetic study of homogeneous dielectric barrier discharge (DBD) in pure krypton (Kr). The electrical characterization and kinetic analyses of the DBD in Kr are performed. The plasma formation in DBD, excited by sinusoidal voltage at high pressure, was studied. The discharge development, with homogeneous model approach and using extended kinetic scheme, is simulated. The study is based on a spatial homogeneity model including the plasma chemistry, the electrical circuit and the Boltzmann equations’. The temporal variations of discharge voltage, dielectrics voltage, discharge current, electric field and species concentrations are calculated. The plasma kinetics is discussed with the aim to finding the optimal efficiency. The photon generation, under typical operating conditions, was investigated and discussed. The effect of some parameters on the excilamp like pressure, applied voltage, and frequency are investigated in order to identify the optimal parameters for maximum luminous efficiency in the UV range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kogelschatz U (1988) Advanced ozone generation. In: Stucki S (ed) Process. Technologies for water treatment. Plenum Press, New York, pp 87–120

    Google Scholar 

  2. Kogelschatz U (1990) Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation. Pure Appl Chem 62:1667–1674

    CAS  Google Scholar 

  3. Kogelschatz U (2012) Ultraviolet excimer radiation from nonequilibrium gas discharges and its application in photophysics, photochemistry and photobiology. J Opt Technol 79:484–493

    CAS  Google Scholar 

  4. Brandenburg R (2017) Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci Technol 26:053001

    Google Scholar 

  5. Esrom H, Kogelschatz U (1992) Modification of surfaces with new excimer UV sources. Thin Solid Films 218:231–246

    CAS  Google Scholar 

  6. Ostrikov K (2014) Plasma-surface interactions at nanoscales: a combinatorial theoretical, process diagnostics and surface microanalysis approach. J Phys D Appl Phys 47:224009

    Google Scholar 

  7. Cui W, Liu W, Wang T, Ma C (2017) The Application of atmospheric pressure dielectric barrier discharge plasma on the cleaning of photovoltaic panels. IEEE Trans Plasma Sci 45:328–335

    CAS  Google Scholar 

  8. Oppenländer T (2007) Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment. J Environ Eng Sci 6:253–264

    Google Scholar 

  9. Neretti G, Taglioli M, Colonna G, Borghi CA (2017) Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water. Plasma Sources Sci Technol 26:015013

    Google Scholar 

  10. Zhang JJ, Wang XZ, Kwon T, Huynh DL, Chandimali N, Kim N, Kang TY, Ghosh M, Gera M, Lee SB, Lee SJ, Lee WS, Kim SB, Mok YS, Jeong DK (2018) Innovative approach of non-thermal plasma application for improving the growth rate in chickens. Int J Mol Sci 19:2301

    PubMed Central  Google Scholar 

  11. Sivachandiran L, Khacef A (2017) Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC Adv 7:1822–1832

    CAS  Google Scholar 

  12. Cenian A, Chernukh A, Borodi V (1995) Modeling of plasma-chemical reactions in gas mixture of CO2 lasers: II. Theoretical model and its verification. Contrib Plasma Phys 35:273–296

    CAS  Google Scholar 

  13. Oh HS, Kim JS (2012) Clinical application of CO2 laser. In: Dumitras DC (ed) CO2 Laser -optimisation and application. Intech Open

  14. Bœuf JP (2003) Plasma display panels: physics, recent developments and key issues. J Phys D Appl Phys 36:R53–R79

    Google Scholar 

  15. Benstâali W, Harrache Z, Belasri A (2012) A study of the discharge characteristics and energy balance of a Ne/Xe pulsed planar dielectric barrier: simulation via the one-dimensional particle-in-cell with Monte Carlo collision method. Phys Scr 85:065502

    Google Scholar 

  16. Liao X, Li J, Muhammad AI, Suo Y, Chen S, Ye X, Liu D, Ding T (2018) Application of a dielectric barrier discharge atmospheric cold plasma (Dbd-Acp) for Eshcerichia coli inactivation in apple juice. J Food Sci 83:401–408

    CAS  PubMed  Google Scholar 

  17. Pankaj SK, Bueno-Ferrer C, Misra NN, Milosavljevic V, O’Donnell CP, Bourke P, Keener KM, Cullen PJ (2014) Applications of cold plasma technology in food packaging. Trends Food Sci Technol 35:5–17

    CAS  Google Scholar 

  18. Rossi F, Kylián O, Rauscher H, Hasiwa M, Gilliland D (2009) Low pressure plasma discharges for the sterilization and decontamination of surfaces. New J Phys 11:115017

    Google Scholar 

  19. Cavazzana R, Martines E, Zuin M, Marinaro G, De Rosa S, Indolfi C (2018) Plasma coagulation controller: a low-power atmospheric plasma source for accelerated blood coagulation. Plasma Med 8:245–254

    Google Scholar 

  20. Shekhter AB, Serezhenkov VA, Rudenko TG, Pekshev AV, Vanin AF (2005) Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric Oxide 12:210–219

    CAS  PubMed  Google Scholar 

  21. Sun P, Pan J, Tian Y, Bai N, Wu H, Wang L, Yu C, Zhang J, Zhu W, Becker KH, Fang J (2010) Tooth whitening with hydrogen peroxide assisted by a direct-current cold atmospheric-pressure air plasma microjet. IEEE Trans Plasma Sci 38:1892–1896

    CAS  Google Scholar 

  22. Karki SB, Ayan EY, Eisenmann KM, Ayan H (2017) Miniature dielectric barrier discharge nonthermal plasma induces apoptosis in lung cancer cells and inhibits cell migration. Biomed Res Int 2017:1–12

    Google Scholar 

  23. Keidar M (2015) Plasma for cancer treatment. Plasma Sources Sci Technol 24:033001

    Google Scholar 

  24. Kaushik NK, Kaushik N, Linh NN, Ghimire B, Pengkit A, Sornsakdanuphap J, Lee SJ, Choi EH (2019) Plasma and nanomaterials: fabrication and biomedical applications. Nanomaterials 9:98

    PubMed Central  Google Scholar 

  25. Oppenländer T, Sosnin E (2005) Mercury-free vacuum-(VUV) and UV excilamps: lamps of the future? IUVA NEWS 7:16–20

    Google Scholar 

  26. Sosnin EA, Oppenländer T, Tarasenko VF (2006) Applications of capacitive and barrier discharge excilamps in photoscience. J PhotochemPhotobiol C Photochem Rev 7:145–163

    CAS  Google Scholar 

  27. Boichenko AM, Lomaev MI, Panchenko AN, Sosnin EA, Tarasenko VF (2011) The ultraviolet excilamps: physics, technology and applications. STT Publishing, Tomsk, p 510

    Google Scholar 

  28. Lomaev MI, SosninEA Tarasenko VF (2012) Excilamps and their applications. Prog Quant Electron 36:51–97

    Google Scholar 

  29. Kogelschatz U, Eliasson B, Egli W (1997). Dielectric-barrier discharges principle and applications. J. Phys. IV 7:C4-C47– C4-C66

  30. Zhang JY, Boyd IW (1996) Efficient excimer ultraviolet sources from a dielectric barrier discharge in raregas/halogen mixtures. J Appl Phys 80:633–638

    CAS  Google Scholar 

  31. Lomaev MI, Sosnin EA, Tarasenko VF, Shits DV, Skakun VS, Erofeev MV, Lisenko AA (2006) Capacitive and barrier discharge excilamps and their applications. Instrum Exp Tech 49:595–616

    CAS  Google Scholar 

  32. Carman RJ, Mildren RP (2003) Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (λ ~ 172 nm). J Phys D Appl Phys 36:19–33

    CAS  Google Scholar 

  33. Doanh LT, Bhosle S, Zissis G, Piquet H (2013) Estimation of the light output power and efficiency of a XeCl dielectric barrier discharge exciplex lamp using one-dimensional drift-diffusion model for various voltage waveforms. IEEE Trans Ind Appl 49:331–340

    CAS  Google Scholar 

  34. Belasri A, Harrache Z (2011) Electrical approach of homogenous high pressure Ne/Xe/HCl dielectric barrier discharge for XeCl (308 nm) lamp. Plasma Chem Plasma Process 31:787–798

    CAS  Google Scholar 

  35. Belasri A, Harrache Z (2010) Electrical and kinetical aspects of homogeneous dielectric barrier discharge in xenon for excimer lamps. Phys Plasmas 17:123501

    Google Scholar 

  36. Belasri A, Khodja K, Bendella S, Harrache Z (2010) One-dimensional modelling of DBDs in Ne–Xe mixtures for excimer lamps. J Phys D Appl Phys 43:445202

    Google Scholar 

  37. Han Q, An R, Xu W, Lister G, Zhang S (2013) Radiation characteristics of coaxial KrBr*excilamps based on a dielectric barrier discharge. J Phys D Appl Phys 46:505203

    Google Scholar 

  38. Larbi DahoBachir N, Belasri A (2013) A simplified numerical study of the Kr/Cl2 plasma chemistry in dielectric barrier discharge. Plasma Sci Technol 15:343–349

    Google Scholar 

  39. Belasri A, Larbi DahoBachir N, Harrache Z (2013) Plasma chemical and electrical modeling of a dielectric barrier discharge in Kr–Cl2 gas mixtures. Plasma Chem Plasma Process 33:131–146

    CAS  Google Scholar 

  40. Shuaibov AK, Grabovaya IA, Volovich PN (2007) A VUV–UV gas-discharge lamp on a low-pressure mixture of argon and xenon with bromine vapors. Instrum Exp Tech 50:815–817

    CAS  Google Scholar 

  41. Shuaibov AK, Grabovaya IA, Minya AI, Homoki ZT, Kalyuzhnaya AG, Shchedrin AI (2011) Kinetics of the processes, plasma parameters, and output characteristics of a UV emitter operating on XeI molecules and iodine molecules and atoms. Plasma Phys Rep 37:244–250

    CAS  Google Scholar 

  42. Carman RJ, Goldberg NT, Hansen SC, Gore N, Kane DM (2018) Performance enhancement of a dielectric barrier discharge vacuum-ultraviolet photon source using short-pulsed electrical excitation. IEEE Trans Plasma Sci 46:90–102

    CAS  Google Scholar 

  43. BeleznaiSz Mihajlik G, Maros I, Balazs L, Richter P (2008) Improving the efficiency of a fluorescent Xe dielectric barrier light source using short pulse excitation. J Phys D Appl Phys 41:115202

    Google Scholar 

  44. Oda A, Sugawara H, Sakai Y, Akashi H (2000) Estimation of the light output power and efficiency of Xe barrier discharge excimer lamps using a one-dimensional fluid model for various voltage waveforms. J Phys D Appl Phys 33:1507–1513

    CAS  Google Scholar 

  45. Khodja K, Belasri A, Loukil H (2017) Modeling of a Ne/Xe dielectric barrier discharge excilamp for improvement of VUV radiation production. Plasma Phys Rep 43:891–898

    Google Scholar 

  46. Boichenko AM, Skakun VS, Sosnin EA, Tarasenko VF, Yakovlenko SI (2000) Emission efficiency of exciplex and excimer molecules pumped by a barrier discharge. Laser Phys 10:540–552

    CAS  Google Scholar 

  47. Boichenko AM, Yakovlenko SI (2004) Simulation of KrCl (222 nm) and XeCl (308 nm) excimer lamps with Kr/HCl(Cl2) and Xe/HCl(Cl2) binary and Ne/Kr/Cl2 ternary mixtures excited by glow discharge. Laser Phys 14:1–14

    CAS  Google Scholar 

  48. Kang JW, Kang DH (2019) The synergistic bactericidal mechanism of simultaneous 222-nm krypton chlorine excilamp and 254-nm low-pressure mercury lamp treatment. Appl Environ Microbiol 85:e01952–18

  49. Budovich VL, Polotnyuk EB, Gerasimov GN, Krylov BE (2013) Characteristics of a glow-discharge krypton lamp in the vacuum ultraviolet. J Opt Technol 80:691–692

    CAS  Google Scholar 

  50. Gregório J, Aubert X, Hagelaar GJM, Puech V, Pitchford LC (2014) Nanosecond-pulsed dielectric barrier discharges in Kr/Cl2 for production of ultraviolet radiation. Plasma Sources Sci Technol 23:015005

    Google Scholar 

  51. Rodriguez Akerreta P, Merbahi N, Sewraj N, Marchal F, Ledru G, Ramasamy A, Gardou JP (2008) Electrical properties of a pure krypton dielectric barrier discharge. In: 17th Gas discharge int. conf., Cardiff, pp 277–280

  52. Feng X, Zhu S (2006) Investigation of excimer ultraviolet sources from dielectric barrier discharge in krypton and halogen mixtures. Phys Scr 74:322–325

    CAS  Google Scholar 

  53. Bendella S, Larouci B, Belasri A (2013) Modeling of Kr–Xe discharge of excimer lamp. EPJ Web Conf 44:04004

    CAS  Google Scholar 

  54. Zvereva GN (2003) Calculation of the parameters of vacuum-ultraviolet emission of excimers in the plasma of a barrier discharge in a krypton-xenon mixture. Opt Spectrosc 94:191–198

    CAS  Google Scholar 

  55. Caillier B, Guillot P, Menguellat IZA, Larbi DahoBachir N, Belasri A (2016) Characteristics of krypton dielectric barrier discharge lamp. In: 2016 IEEE International conference on plasma science (ICOPS), pp 1–1

  56. Larbi DahoBachir N, Belasri A, Guillot P, Caillier B (2019) Radiative emissions in visible–IR of krypton excilamp: experimental and theoretical interpretations. Plasma Chem Plasma Process 39:1243–1254

    CAS  Google Scholar 

  57. Bolsig+, KINEMA Software, [On-line]. http://www.siglo-kinema.com

  58. Eckstrom DJ, Nakano HH, Lorents DC, Rothem T, Betts JA, Lainhart ME, Triebes KJ, Dakin DA (1988) Characteristics of electron-beam-excited Kr*2 at low pressures as a vacuum ultraviolet source. J Appl Phys 64:1691–1695

    CAS  Google Scholar 

  59. Gerasimov GN, Zvereva GN (1997) Numerical modelling of processes in a discharge plasma in krypton. Opticheski. Zhurnal 64:15–18

    Google Scholar 

  60. Zvereva GN (2010) Calculation of parameters of krypton plasma excited by electron beam with additional heating by high-frequency electric field. Opt Spectrosc 108:4–11

    CAS  Google Scholar 

  61. Zvereva GN (2006) Investigation of the amplifying properties of a krypton gas discharge plasma. Opt Spectrosc 100:818–824

    CAS  Google Scholar 

  62. Kawanaka J, Shirai T, Kubodera S, Susaki W (2001) 1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas. Appl Phys Lett 79:3752–3754

    CAS  Google Scholar 

  63. Shiu YJ, Biondi MA, Sipler DP (1977) Dissociative recombination in xenon: variation of the total rate coefficient and excited-state production with electron temperature. Phys Rev A 15:494–498

    CAS  Google Scholar 

  64. Gerasimov G, Krylov B, Loginov A, Zvereva G, Hallin R, Arensen A, Heijkensjold F (1998) The vacuum ultraviolet spectrum of krypton and xenon excimers excited in a cooled dc discharge. Appl Phys B Lasers Opt 66:81–90

    CAS  Google Scholar 

  65. Bae HS, Woong Whang K (2008) Analysis of the discharge characteristics for Kr gas mixtures in an ac plasma display panel. J Korean Phys Soc 53:624–630

    CAS  Google Scholar 

  66. Morozov A, Krylov B, Gerasimov G, Arnesen A, Hallin R (2002) A study of atomic and molecular energy transfer channels in Kr–Xe gas mixtures excited with radio frequency discharges. J Phys B At Mol Opt Phys 35:1929–1940

    CAS  Google Scholar 

  67. Avtaeva SV, Kulumbaev EB, Skornyakov AV (2008) One-dimensional drift-diffusion model of the Kr dielectric barrier discharge. In: 15th SHCE proceedings pinches, plasma focus and capillary discharge, Russia, pp 248–251

  68. Baadj S, Harrache Z, Belasri A (2013) Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge. Plasma Phys Rep 39:1043–1054

    CAS  Google Scholar 

  69. Harrache Z, Calzada MD, Belasri A (2011) Modeling self-sustained discharge-pumped, Ne-buffered XeCl laser kinetics. Plasma Phys Rep 37:904–912

    CAS  Google Scholar 

  70. Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  71. Zhuang X, Han Q, Zhang H, Feng X, Roth M, Rosier O, Zhu S, Zhang S (2010) The efficiency of coaxial KrCl* excilamps. J Phys D Appl Phys 43:205202

    Google Scholar 

  72. Paschen F (1889) Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Wied Ann 37:69–96

    Google Scholar 

  73. Khadir N, Khodja K, Belasri A (2017) Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production. Plasma Sci Technol 19:095502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Harrache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benstâali, W., Larbi Daho Bachir, N., Bendella, S. et al. Theoretical Kinetics Investigation of Krypton Dielectric Barrier Discharge for UV Lamp. Plasma Chem Plasma Process 40, 1585–1603 (2020). https://doi.org/10.1007/s11090-020-10110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10110-1

Keywords

Navigation