Skip to main content
Log in

Optimization of TiO2 Mesoporous Photoanodes Prepared by Inkjet Printing and Low-Temperature Plasma Processing

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This study describes and evaluates a low-temperature method for ambient-air plasma fabrication of hybrid titania/silica nanocomposite mesoporous layers that generate and transport electrons. The mesoporous layers were prepared using wet coating with a dispersion consisting of prefabricated titania nanoparticles and polysiloxane binder, subsequently inkjet-printed and plasma-processed by diffuse coplanar surface barrier discharge, to form an almost inorganic titania/silica coating of the high specific surface. The study demonstrates approaches to optimization of the coating, using various TiO2 nanoparticles, and of the plasma processing, together with the economic significance of printing and plasma processing—an approach compatible with processes envisaged for the manufacture of flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Weerasinghe HC, Huang F, Cheng Y-B (2013) Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2:174–189. https://doi.org/10.1016/j.nanoen.2012.10.004

    Article  CAS  Google Scholar 

  2. Gong J, Liang J, Sumathy K (2012) Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renew Sustain Energy Rev 16:5848–5860. https://doi.org/10.1016/j.rser.2012.04.044

    Article  CAS  Google Scholar 

  3. Hashmi SG, Özkan M, Halme J et al (2016) Dye-sensitized solar cells with inkjet-printed dyes. Energy Environ Sci 9:2453–2462. https://doi.org/10.1039/c6ee00826g

    Article  CAS  Google Scholar 

  4. Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sustain Energy Rev 68:234–246. https://doi.org/10.1016/j.rser.2016.09.097

    Article  CAS  Google Scholar 

  5. Grätzel M (2017) The rise of highly efficient and stable perovskite solar cells. Acc Chem Res 50:487–491. https://doi.org/10.1021/acs.accounts.6b00492

    Article  CAS  PubMed  Google Scholar 

  6. Williams ST, Rajagopal A, Chueh C-C, Jen AK-Y (2016) Current challenges and prospective research for upscaling hybrid perovskite photovoltaics. J Phys Chem Lett 7:811–819. https://doi.org/10.1021/acs.jpclett.5b02651

    Article  CAS  PubMed  Google Scholar 

  7. Razza S, Castro-Hermosa S, Di Carlo A, Brown TM (2016) Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater 4:091508. https://doi.org/10.1063/1.4962478

    Article  CAS  Google Scholar 

  8. Green MA, Ho-Baillie AW-Y (2017) Perovskite solar cells: the birth of a new era in photovoltaics. ACS Energy Lett 2:822–830. https://doi.org/10.1021/acsenergylett.7b00137

    Article  CAS  Google Scholar 

  9. Levchuk I, Sillanpää M, Guillard C et al (2016) Enhanced photocatalytic activity through insertion of plasmonic nanostructures into porous TiO2/SiO2 hybrid composite films. J Catal 342:117–124. https://doi.org/10.1016/j.jcat.2016.07.015

    Article  CAS  Google Scholar 

  10. Méndez-Medrano MG, Kowalska E, Lehoux A et al (2016) Surface modification of TiO2 with Au nanoclusters for efficient water treatment and hydrogen generation under visible light. J Phys Chem C 120:25010–25022. https://doi.org/10.1021/acs.jpcc.6b06854

    Article  CAS  Google Scholar 

  11. Eftekhari A, Babu VJ, Ramakrishna S (2017) Photoelectrode nanomaterials for photoelectrochemical water splitting. Int J Hydrogen Energy 42:11078–11109. https://doi.org/10.1016/j.ijhydene.2017.03.029

    Article  CAS  Google Scholar 

  12. Priebe JB, Radnik J, Lennox AJJ et al (2015) Solar hydrogen production by plasmonic Au–TiO2 catalysts: impact of synthesis protocol and TiO2 phase on charge transfer efficiency and H2 evolution rates. ACS Catal 5:2137–2148. https://doi.org/10.1021/cs5018375

    Article  CAS  Google Scholar 

  13. Li W, Wang F, Liu Y et al (2015) General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett 15:2186–2193. https://doi.org/10.1021/acs.nanolett.5b00291

    Article  CAS  PubMed  Google Scholar 

  14. Correa-Baena J-P, Saliba M, Buonassisi T et al (2017) Promises and challenges of perovskite solar cells. Science 358:739–744. https://doi.org/10.1126/science.aam6323

    Article  CAS  PubMed  Google Scholar 

  15. Chang NL, Ho-Baillie AWY, Vak D et al (2018) Manufacturing cost and market potential analysis of demonstrated roll-to-roll perovskite photovoltaic cell processes. Sol Energy Mater Sol Cells 174:314–324. https://doi.org/10.1016/j.solmat.2017.08.038

    Article  CAS  Google Scholar 

  16. Mali SS, Hong CK (2016) P-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale 8:10528–10540. https://doi.org/10.1039/c6nr02276f

    Article  CAS  PubMed  Google Scholar 

  17. Chou C-Y, Chang H, Liu H-W et al (2015) Atmospheric-pressure-plasma-jet processed nanoporous TiO2 photoanodes and Pt counter-electrodes for dye-sensitized solar cells. RSC Adv 5:45662–45667. https://doi.org/10.1039/C5RA05014F

    Article  CAS  Google Scholar 

  18. Yasin A, Guo F, Demopoulos GP (2016) Aqueous, screen-printable paste for fabrication of mesoporous composite anatase-rutile TiO2 nanoparticle thin films for (photo)electrochemical devices. ACS Sustain Chem Eng 4:2173–2181. https://doi.org/10.1021/acssuschemeng.5b01625

    Article  CAS  Google Scholar 

  19. Li R, Zhao Y, Hou R et al (2016) Enhancement of power conversion efficiency of dye sensitized solar cells by modifying mesoporous TiO2 photoanode with Al-doped TiO2 layer. J Photochem Photobiol A Chem 319–320:62–69. https://doi.org/10.1016/j.jphotochem.2016.01.002

    Article  CAS  Google Scholar 

  20. Wang Y, Yuan Q, Yin G et al (2016) Synthesis of mixed-phase TiO2 nanopowders using atmospheric pressure plasma jet driven by dual-frequency power sources. Plasma Chem Plasma Process 36:1471–1484. https://doi.org/10.1007/s11090-016-9746-x

    Article  CAS  Google Scholar 

  21. Chou W-C, Liu W-J (2016) Study of dye sensitized solar cell application of TiO2 films by atmospheric pressure plasma deposition method. In: 2016 International conference on Electronic Package, IEEE, pp 664–668

  22. Di Giacomo F, Zardetto V, D’Epifanio A et al (2015) Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv Energy Mater 5:1401808. https://doi.org/10.1002/aenm.201401808

    Article  CAS  Google Scholar 

  23. Kim H, Hwang T (2014) Effect of titanium isopropoxide addition in low-temperature cured TiO2 photoanode for a flexible DSSC. J Sol-Gel Sci Technol 72:67–73. https://doi.org/10.1007/s10971-014-3427-0

    Article  CAS  Google Scholar 

  24. Jiang YF, Chen YY, Zhang B, Feng YQ (2016) N, La Co-doped TiO2 for use in low-temperature-based dye-sensitized solar cells. J Electrochem Soc 163:F1133–F1138. https://doi.org/10.1149/2.0141610jes

    Article  CAS  Google Scholar 

  25. Li F, Xu M, Ma X et al (2018) UV treatment of low-temperature processed SnO2 electron transport layers for planar perovskite solar cells. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2633-z

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zardetto V, Brown TM, Reale A, Di Carlo A (2011) Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci, Part B: Polym Phys 49:638–648. https://doi.org/10.1002/polb.22227

    Article  CAS  Google Scholar 

  27. Medvecká V, Kováčik D, Zahoranová A et al (2016) Atmospheric pressure plasma assisted calcination of organometallic fibers. Mater Lett 162:79–82. https://doi.org/10.1016/j.matlet.2015.09.109

    Article  CAS  Google Scholar 

  28. Medvecká V, Kováčik D, Tučeková Z et al (2016) Atmospheric pressure plasma assisted calcination of composite submicron fibers. Eur Phys J Appl Phys 75:24715. https://doi.org/10.1051/epjap/2016150585

    Article  CAS  Google Scholar 

  29. Mudra E, Streckova M, Pavlinak D et al (2016) Development of Al2O3 electrospun fibers prepared by conventional sintering method or plasma assisted surface calcination. Appl Surf Sci 415:90–98. https://doi.org/10.1016/j.apsusc.2016.11.162

    Article  CAS  Google Scholar 

  30. Medvecká V, Kováčik D, Zahoranová A, Černák M (2018) Atmospheric pressure plasma assisted calcination by the preparation of TiO2 fibers in submicron scale. Appl Surf Sci 428:609–615. https://doi.org/10.1016/j.apsusc.2017.09.178

    Article  CAS  Google Scholar 

  31. Prysiazhnyi V, Brablec A, Čech J et al (2014) Generation of large-area highly-nonequlibrium plasma in pure hydrogen at atmospheric pressure. Contrib Plasma Phys 54:138–144. https://doi.org/10.1002/ctpp.201310060

    Article  CAS  Google Scholar 

  32. Krumpolec R, Čech J, Jurmanová J et al (2017) Atmospheric pressure plasma etching of silicon dioxide using diffuse coplanar surface barrier discharge generated in pure hydrogen. Surf Coat Technol 309:301–308. https://doi.org/10.1016/j.surfcoat.2016.11.036

    Article  CAS  Google Scholar 

  33. Jirásek V, Čech J, Kozak H et al (2016) Plasma treatment of detonation and HPHT nanodiamonds in diffuse coplanar surface barrier discharge in H2/N2 flow. Phys Status Solidi Appl Mater Sci 213:2680–2686. https://doi.org/10.1002/pssa.201600184

    Article  CAS  Google Scholar 

  34. Kromka A, Čech J, Kozak H et al (2015) Low-temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure. Phys Status Solidi 252:2602–2607. https://doi.org/10.1002/pssb.201552232

    Article  CAS  Google Scholar 

  35. Homola T, Pospíšil J, Krumpolec R et al (2018) Atmospheric dry hydrogen plasma reduction of inkjet-printed flexible graphene oxide surfaces. Chemsuschem 11:941–947. https://doi.org/10.1002/cssc.201702139

    Article  CAS  PubMed  Google Scholar 

  36. Homola T, Shekargoftar M, Pospíšil J (2020) Atmospheric plasma treatment of ITO thin films for rapid manufacturing of perovskite solar cells. In: NANOCON 2019 Conference on Proeedings of TANGER Ltd., pp 43–47. https://doi.org/10.37904/nanocon.2019.8645

  37. Šimončicová J, Kaliňáková B, Kováčik D et al (2018) Cold plasma treatment triggers antioxidative defense system and induces changes in hyphal surface and subcellular structures of Aspergillus flavus. Appl Microbiol Biotechnol 102:6647–6658. https://doi.org/10.1007/s00253-018-9118-y

    Article  CAS  PubMed  Google Scholar 

  38. Waskow A, Betschart J, Butscher D et al (2018) Characterization of efficiency and mechanisms of cold atmospheric pressure plasma decontamination of seeds for sprout production. Front Microbiol 9:3164. https://doi.org/10.3389/FMICB.2018.03164

    Article  PubMed  PubMed Central  Google Scholar 

  39. Homola T, Shekargoftar M, Dzik P et al (2017) Low-temperature (70 °C) ambient air plasma-fabrication of inkjet-printed mesoporous TiO2 flexible photoanodes. Flex Print Electron 2:035010. https://doi.org/10.1088/2058-8585/aa88e6

    Article  CAS  Google Scholar 

  40. Homola T, Dzik P, Veselý M et al (2016) Fast and low-temperature (70 °C) mineralization of inkjet printed mesoporous TiO2 photoanodes using ambient air plasma. ACS Appl Mater Interfaces 8:33562–33571. https://doi.org/10.1021/acsami.6b09556

    Article  CAS  PubMed  Google Scholar 

  41. Shoeb J, Wang MM, Kushner MJ (2012) Damage by radicals and photons during plasma cleaning of porous low-k SiOCH. I. Ar/O2 and He/H2 plasmas. J Vac Sci Technol, A 30:041303. https://doi.org/10.1116/1.4718444

    Article  CAS  Google Scholar 

  42. Shoeb J, Kushner MJ (2012) Damage by radicals and photons during plasma cleaning of porous low-k SiOCH. II. Water uptake and change in dielectric constant. J Vac Sci Technol, A 30:041304. https://doi.org/10.1116/1.4718447

    Article  CAS  Google Scholar 

  43. Homola T, Pongrác B, Zemánek M, Šimek M (2019) Efficiency of ozone production in coplanar dielectric barrier discharge. Plasma Chem Plasma Process 39:1227–1242. https://doi.org/10.1007/s11090-019-09993-6

    Article  CAS  Google Scholar 

  44. Morozova M, Kluson P, Krysa J et al (2011) Thin TiO2 films prepared by inkjet printing of the reverse micelles sol–gel composition. Sens Actuat B 160:371–378. https://doi.org/10.1016/j.snb.2011.07.063

    Article  CAS  Google Scholar 

  45. Černá M, Veselý M, Dzik P et al (2013) Fabrication, characterization and photocatalytic activity of TiO2 layers prepared by inkjet printing of stabilized nanocrystalline suspensions. Appl Catal B 138:84–94. https://doi.org/10.1016/j.apcatb.2013.02.035

    Article  CAS  Google Scholar 

  46. Dzik P, Veselý M, Kete M et al (2015) Properties and application perspective of hybrid titania-silica patterns fabricated by inkjet printing. ACS Appl Mater Interfaces 7:16177–16190. https://doi.org/10.1021/acsami.5b03494

    Article  CAS  PubMed  Google Scholar 

  47. Hynek J, Kalousek V, Žouželka R et al (2014) High photocatalytic activity of transparent films composed of ZnO nanosheets. Langmuir 30:380–386. https://doi.org/10.1021/la404017q

    Article  CAS  PubMed  Google Scholar 

  48. Vidmar T, Topič M, Dzik P, Opara Krašovec U (2014) Inkjet printing of sol–gel derived tungsten oxide inks. Sol Energy Mater Sol Cells 125:87–95. https://doi.org/10.1016/j.solmat.2014.02.023

    Article  CAS  Google Scholar 

  49. Grégori D, Benchenaa I, Chaput F et al (2014) Mechanically stable and photocatalytically active TiO2/SiO2 hybrid films on flexible organic substrates. J Mater Chem A 2:20096–20104. https://doi.org/10.1039/C4TA03826F

    Article  CAS  Google Scholar 

  50. Chua CS, Tan OK, Tse MS, Ding X (2013) Photocatalytic activity of tin-doped TiO2 film deposited via aerosol assisted chemical vapor deposition. Thin Solid Films 544:571–575. https://doi.org/10.1016/j.tsf.2012.12.066

    Article  CAS  Google Scholar 

  51. Sang G, Yun Y, Hee M et al (2018) Correlation between photoactivity of TiO2 and diffusion of Na + ions from soda lime glass. Mater Lett 228:351–355. https://doi.org/10.1016/j.matlet.2018.06.057

    Article  CAS  Google Scholar 

  52. Kim SJ, Kim MC, Han SB et al (2016) 3D flexible Si based-composite (Si@Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries. Nano Energy 27:545–553. https://doi.org/10.1016/j.nanoen.2016.08.012

    Article  CAS  Google Scholar 

  53. Biesinger MC, Lau LWM, Gerson AR et al (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  54. Khung YL, Ngalim SH, Scaccabarozzi A, Narducci D (2015) Formation of stable Si–O–C submonolayers on hydrogenterminated silicon(111) under low-temperature conditions. Beilstein J Nanotechnol 6:19–26. https://doi.org/10.3762/bjnano.6.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by project 19-14770Y funded by Czech Science Foundation and by the project LM2018097 funded by Ministry of Education, Youth and Sports of Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Homola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Homola, T., Ďurašová, Z., Shekargoftar, M. et al. Optimization of TiO2 Mesoporous Photoanodes Prepared by Inkjet Printing and Low-Temperature Plasma Processing. Plasma Chem Plasma Process 40, 1311–1330 (2020). https://doi.org/10.1007/s11090-020-10086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10086-y

Keywords

Navigation