Skip to main content
Log in

Nonequilibrium Phenomena in (Quasi-)thermal Plasma Flows

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Thermal plasmas are utilized in diverse applications that require high power densities or throughputs, such as metal cutting, welding, spraying, metallurgy, and materials synthesis. Thermal plasma applications involve interactions between the highly energetic plasma and working gas streams, confining devices, or processing materials. Whereas thermal plasma implies a state of equilibrium (i.e. Local Thermodynamic Equilibrium, LTE), due to the above interactions, thermal plasma flows depict nonequilibrium phenomena of two types: kinetic and dissipative. Kinetic nonequilibrium manifests microscopically and is caused by localized imbalances between particles and fields interactions. Its occurrence is evidenced, for example, as deviations from thermal equilibrium between heavy-species and electrons or from mass-action laws. In contrast, dissipative nonequilibrium reveals macroscopically and is produced by external driving forces that incite distributed responses, such as the growth of instabilities, the occurrence of self-organization, or the establishment of turbulence. Although kinetic nonequilibrium has been increasingly incorporated in thermal plasma flow models (e.g. finite-rate chemistry, two-temperature models), it is the great advances in numerical computing that is enabling the exploration of dissipative nonequilibrium (e.g. pattern formation, small-scale turbulent features). Both types of nonequilibrium are reviewed, including their estimation and incidence, within the context of computational models and their relevance to thermal plasma sources and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Mamun SA, Tanaka Y, Uesugi Y (2010) Two-temperature two-dimensional non chemical equilibrium modeling of Ar–CO2–H2 induction thermal plasmas at atmospheric pressure. Plasma Chem Plasma Process 30:141–172

    CAS  Google Scholar 

  2. Almeida PGC, Benilov MS, Cunha MD, Faria MJ (2009) Analysing bifurcations encountered in numerical modelling of current transfer to cathodes of DC glow and arc discharges. J Phys D Appl Phys 42:194010

    Google Scholar 

  3. Alaya M, Chazelas C, Vardelle A (2016) Parametric study of plasma torch operation using a MHD model coupling the arc and electrodes. J Therm Spray Technol 25(1/2):36–43

    CAS  Google Scholar 

  4. Baeva M (2016) Thermal and chemical nonequilibrium effects in free-burning arcs. Plasma Chem Plasma Process 36(1):151–167

    CAS  Google Scholar 

  5. Baeva M, Benilov MS, Almeida NA, Uhrlandt D (2016) Novel non-equilibrium modelling of a DC electric arc in argon. J Phys D Appl Phys 49:245205

    Google Scholar 

  6. Baeva M (2017) Non-equilibrium modeling of tungsten-inert gas arcs. Plasma Chem Plasma Process 37(2):341–370

    CAS  Google Scholar 

  7. Baeva M (2017) A survey of chemical nonequilibrium in argon arc plasma. Plasma Chem Plasma Process 37(3):513–530

    CAS  Google Scholar 

  8. Baeva M, Uhrlandt D, Murphy AB (2017) A collisional-radiative model of iron vapour in a thermal arc plasma. J Phys D Appl Phys 50:22LT02

    Google Scholar 

  9. Benilov MS (2014) Multiple solutions in the theory of DC glow discharges and cathodic part of arc discharges. Application of these solutions to the modeling of cathode spots and patterns: a review. Plasma Sources Sci Technol 23:054019

    Google Scholar 

  10. Beulens JJ, Milojevic D, Schram DC, Vallinga PM (1991) A two-dimensional nonequilibrium model of cascaded arc plasma flows. Phys Fluids B 3:2548

    Google Scholar 

  11. Bhigamudre VG, Trelles JP (2019) Characterization of the arc in crossflow using a two-temperature nonequilibrium plasma flow model. J Phys D Appl Phys 52:1

    Google Scholar 

  12. Bhigamudre VG, Trelles JP (2019b) Computational investigation of regimes of the arc in crossflow. In: 24th international symposium on plasma chemistry (ISPC 24), Naples, Italy, 9–14 June 2019

  13. Bird RB, Stewart WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  14. Bogaerts A, Berthelot A, Heijkers S, St Kolev, Snoeckx R, Sun S, Trenchev G, Van Laer K, Wang W (2017) CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design. Plasma Sources Sci Technol 26:063001

    Google Scholar 

  15. Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, van den Bekerom D, den Harder N, Goede A, Graswinckel M, Willem Groen P, Kopecki J, Leins M, van Rooij G, Schulz A, Walker M, van de Sanden R (2017) Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Process Polym 14:e1600126

    Google Scholar 

  16. Boselli M, Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Two-temperature modelling and optical emission spectroscopy of a constant current plasma arc welding process. J Phys D Appl Phys 46:224009

    Google Scholar 

  17. Boselli M, Colombo V, Ghedini E, Gherardi M, Rotundo F, Sanibondi P (2014) Investigation of thermal nonequilibrium in a plasma arc welding process: modeling and diagnostics. IEEE Trans Plasma Sci 42(5):1237–1244

    Google Scholar 

  18. Boulos MI, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications. Plenum, New York

    Google Scholar 

  19. Bruggeman PJ, Iza F, Brandenburg R (2017) Foundations of atmospheric pressure nonequilibrium plasmas. Plasma Sources Sci Technol 26:123002

    Google Scholar 

  20. Cai M, Montaser A, Mostaghimi J (1995) Two-temperature model for the simulation of atmospheric-pressure helium ICPs. Appl Spectrosc 49:1390–1402

    CAS  Google Scholar 

  21. Castro RO, Trelles JP (2015) Spatial and angular finite element method for radiative transfer in participating media. J Quant Spectrosc Radiat Transf 157:81–105

    CAS  Google Scholar 

  22. Charrada K, Zissis G, Aubes M (1996) Two-temperature, two-dimensional fluid modelling of mercury plasma in high-pressure lamps. J Phys D Appl Phys 29:2432

    CAS  Google Scholar 

  23. Chen DM, Hsu KC, Pfender E (1981) Two-temperature modeling of an arc plasma reactor. Plasma Chem Plasma Process 1(3):295–314

    CAS  Google Scholar 

  24. Colombo V, Dallavalle S, Ghedini E, Masini G, Russo D, Vancini M (2006) 2-D and 3-D fluidynamic and plasma characterization of DC transferred arc plasma torches for metal cutting. J High Temp Mater Process 10(3):379

    Google Scholar 

  25. Colombo V, Ghedini E, Boselli M, Sanibondi P, Concetti A (2011) 3D static and time-dependent modelling of a dc transferred arc twin torch system. J Phys D Appl Phys 44:194005

    Google Scholar 

  26. Colombo V, Concetti A, Ghedini E, Rotundo F, Sanibondi P, Boselli M, Dallavalle S, Gherardi M, Nemchinsky V, Vancini M (2012) Advances in plasma arc cutting technology: the experimental part of an integrated approach. Plasma Chem Plasma Process 32:411–426

    CAS  Google Scholar 

  27. Colombo V, Ghedini E, Sanibondi P (2009) Two temperature thermodynamic and transport properties of argon–hydrogen and nitrogen–hydrogen plasmas. J Phys D Appl Phys 42:055213

    Google Scholar 

  28. Cressault Y (2015) Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling. AIP Adv 5:057112

    Google Scholar 

  29. Cross MC, Greenside H (2009) Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press, Cambridge

    Google Scholar 

  30. Drazin PG, Reid WH (2004) Hydrodynamic stability. Cambridge University Press, Cambridge

    Google Scholar 

  31. Duan Z, Heberlein J (2002) Arc instabilities in a plasma spray torch. J Therm Spray Technol 11(1):44–51

    Google Scholar 

  32. Freton P, Gonzalez JJ, Ranarijaona Z, Mougenot J (2012) Energy equation formulations for two-temperature modelling of ‘thermal’ plasmas. J Phys D Appl Phys 45:465206

    Google Scholar 

  33. Fridman A, Chirokov A, Gutsol A (2005) Non-thermal atmospheric pressure discharges. J Phys D Appl Phys 38:R1–R24

    CAS  Google Scholar 

  34. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  35. Fulcheri L, Rollier J-D, Gonzalez-Aguilar J (2007) Design and electrical charaterization of a low current–high voltage compact arc plasma torch. Plasma Sources Sci Technol 16:183–192

    CAS  Google Scholar 

  36. Gleizes A (2015) Perspectives on thermal plasma modelling. Plasma Chem Plasma Process 35(3):455–469

    CAS  Google Scholar 

  37. Gleizes A, Cressault Y (2017) Effect of metal vapours on the radiation properties of thermal plasmas. Plasma Chem Plasma Process 37:581

    CAS  Google Scholar 

  38. Goedbloed H, Poedts S (2004) Principles of magnetohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  39. Haidar J (1999) Non-equilibrium modelling of transferred arcs. J Phys D Appl Phys 32:263

    CAS  Google Scholar 

  40. Heberlein J, Mentel J, Pfender E (2010) The anode region of electric arcs: a survey. J Phys D Appl Phys 43:023001

    Google Scholar 

  41. Hsu KC, Pfender E (1983) Two-temperature modeling of the free-burning, high-intensity arc. J Appl Phys 54:4359

    CAS  Google Scholar 

  42. Kassir A-M, Cressault Y, Masquère M, Teulet P (2019) Spectres radiatifs des systèmes moléculaires dans un plasma d’air à la pression atmosphérique. 14ème Colloque Sur Les Arcs Electriques (CAE XIV 2019), Bourges, France, 18–19 March 2019

  43. Klimontovic YL (1995) Statistical theory of open systems. Volume I: a unified approach to kinetic description of processes in active systems. Springer, Dordrecht

    Google Scholar 

  44. Konishi K, Shigeta M, Tanaka M, Murata A, Murata T, Murphy AB (2017) Numerical study on thermal non-equilibrium of arc plasmas in TIG welding processes using a two-temperature model. Weld World 61(1):197–207

    CAS  Google Scholar 

  45. Kwak HS, Uhm HS, Hong YC, Choi EH (2015) Disintegration of carbon dioxide molecules in a microwave plasma torch. Sci Rep 5:18436

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Li H-P, Zhang X-N, Xia W-D (2013) A numerical model of non-equilibrium thermal plasmas. II. governing equations. Phys Plasmas 20:033509

    Google Scholar 

  47. Liang P, Groll R (2018) Numerical study of plasma–electrode interaction during arc discharge in a dc plasma torch. IEEE Trans Plasma Sci 46(2):363–372

    CAS  Google Scholar 

  48. Liang P (2019) 2D self-consistent modeling of arc–electrode interaction in GTAW using a finite volume method. J Phys D Appl Phys 52:035203

    Google Scholar 

  49. Liang P, Boutrouche VD, Trelles JP (2019) Coupled plasma-electrode simulation of the free-burning arc using a chemical and thermal non-equilibrium model. In: 24th international symposium on plasma chemistry (ISPC 24), Naples, Italy, 9–14 June 2019

  50. Liang P, Trelles JP (2019) 3D numerical investigation of a free-burning argon arc with metal electrodes using a novel sheath coupling procedure. Plasma Sources Sci Technol. https://doi.org/10.1088/1361-6595/ab4bb6

    Article  Google Scholar 

  51. Lino da Silva M (2007) An adaptive line-by-line—statistical model for fast and accurate spectral simulations in low-pressure plasmas. J Quantum Spectrosc Radiat Transf 108:106–125

    CAS  Google Scholar 

  52. Lino da Silva M (2016) SPARTAN—simulation of plasma radiation in thermodynamic nonequilibrium. http://esther.ist.utl.pt/spartan/. Accessed 16 Aug 2019

  53. Meher KC, Tiwari N, Ghorui S (2015) Thermodynamic and transport properties of nitrogen plasma under thermal equilibrium and non-equilibrium conditions. Plasma Chem Plasma Process 35(4):605–637

    CAS  Google Scholar 

  54. Mitchner M, Kruger CH (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  55. Modir Khazeni SM, Trelles JP (2018) Non-transferred arc torch simulation by a nonequilibrium plasma laminar-to-turbulent flow model. J Therm Spray Technol 27(8):1447

    CAS  Google Scholar 

  56. Mohsenian S, Nagassou D, Bhatta S, Elahi R, Trelles JP (2018) Design and characterization of an electromagnetic-resonant cavity microwave plasma reactor for atmospheric pressure carbon dioxide decomposition. Plasma Proc Polym 16:e1800153

    Google Scholar 

  57. Mohsenian S, Nagassou D, Bhatta S, Elahi R, Trelles JP (2019) Enhanced carbon dioxide conversion by atmospheric pressure microwave plasma—solar processing. In: 24th international symposium on plasma chemistry (ISPC 24), Naples, Italy, 9–14 June 2019

  58. Mostaghimi J, Proulx P, Boulos MI (1987) A two-temperature model of the inductively coupled rf plasma. J Appl Phys 61:1753

    CAS  Google Scholar 

  59. Mostaghimi J, Boulos MI (1990) Effect of frequency on local thermodynamic equilibrium conditions in an inductively coupled argon plasma at atmospheric pressure. J Appl Phys 68:2643

    Google Scholar 

  60. Mostaghimi J, Boulos MI (2015) Thermal plasma sources: how well are they adopted to process needs? Plasma Chem Plasma Process 35:421–436

    CAS  Google Scholar 

  61. Murphy AB (1997) Demixing in free-burning arcs. Phys Rev E 55(6):7473–7494

    CAS  Google Scholar 

  62. Murphy AB (2001) Thermal plasmas in gas mixtures. J Phys D Appl Phys 34:R151–R173

    CAS  Google Scholar 

  63. Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke JJ (2009) Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J Phys D Appl Phys 42:194006

    Google Scholar 

  64. Murphy AB, Park H (2017) Modeling of thermal plasma processes: the importance of two-way plasma-surface interactions. Plasma Process Polym 14:1600177

    Google Scholar 

  65. Murphy AB, Uhrlandt D (2018) Foundations of high-pressure thermal plasmas. Plasma Sources Sci Technol 27:063001

    Google Scholar 

  66. Nagassou D, Mohsenian S, Bhatta S, Elahi R, Trelles JP (2019) Solar–gliding arc plasma reactor for carbon dioxide decomposition: design and characterization. Sol Energy 180:678–689

    CAS  Google Scholar 

  67. Nicolis G, Prigogine I (1971) Fluctuations in nonequilibrium systems. Proc Natl Acad Sci USA 68:2102

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nikitin EE, Troe J (2008) 70 years of Landau–Teller theory for collisional energy transfer. Semiclassical three-dimensional generalizations of the classical collinear model. Phys Chem Chem Phys 10:1483–1501

    CAS  PubMed  Google Scholar 

  69. Okuma T, Maruyama H, Hashizume T, Tanaka M, Watanabe T, Nagai H, Koiwasaki T, Hiroshi Nasu (2019) Effects of the driving frequency on temperature in a multiphase AC arc. IEEE Trans Plasma Sci 47(1):32–38

    CAS  Google Scholar 

  70. Paik SH, Pfender E (1990) Modeling of an inductively coupled plasma at reduced pressures. Plasma Chem Plasma Process 10:167–188

    CAS  Google Scholar 

  71. Paik SH, Pfender E (1990) Argon plasma transport properties at reduxed pressures. Plasma Chem Plasma Process 10(2):291–304

    CAS  Google Scholar 

  72. Pfender E (1994) Plasma jet behavior and modeling associated with the plasma spray process. Thin Solid Films 238:228–241

    CAS  Google Scholar 

  73. Prigogine I (1978) Time, structure, and fluctuations. Science 201(4358):777–785

    CAS  PubMed  Google Scholar 

  74. Ramshaw JD, Chang CH (1993) Ambipolar diffusion in two-temperature multicomponent plasmas. Plasma Chem Plasma Process 13(3):489–498

    CAS  Google Scholar 

  75. Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2001) Transport properties in a two-temperature plasma: theory and application. Phys Rev E 64:026409

    CAS  Google Scholar 

  76. Rat V, Murphy AB, Aubreton J, Elchinger MF, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows. J Phys D Appl Phys 41:183001

    Google Scholar 

  77. Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2014) Unsteady state analysis of free-burning arcs in a 3-Phase AC plasma torch: comparison between parallel and coplanar electrode configurations. Plasma Sources Sci Technol 23(6):065011

    CAS  Google Scholar 

  78. Shigeta M (2016) Turbulence modelling of thermal plasma flows. J Phys D Appl Phys 49:493001

    Google Scholar 

  79. Shigeta M (2018) Numerical Study of axial magnetic effects on a turbulent thermal plasma jet for nanopowder production using 3D time-dependent simulation. J Flow Control Meas Vis 6:107–123

    CAS  Google Scholar 

  80. Shigeta M (2019) To simulate turbulent thermal plasma flows for nanopowder fabrication. In: 24th international symposium on plasma chemistry (ISPC 24), Naples, Italy, 9–14 June 2019

  81. Sun H, Yi Wu, Tanaka Y, Tomita K, Wu Y, Rong M, Uesugi Y, Ishijima T (2016) Computational non-chemically equilibrium model on the current zero simulation in a model N2 circuit breaker under the free recovery condition. J Phys D Appl Phys 49:055204

    Google Scholar 

  82. Sun H, Yi Wu, Tanaka Y, Tomita K, Rong M (2019) Investigation on chemically non-equilibrium arc behaviors of different gas media during arc decay phase in a model circuit breaker. J Phys D Appl Phys 52:075202

    Google Scholar 

  83. Tanaka Y (2004) Two-temperature chemically non-equilibrium modelling of high-power Ar–N2 inductively coupled plasmas at atmospheric pressure. J Phys D Appl Phys 37:1190–1205

    CAS  Google Scholar 

  84. Tanaka Y (2006) Time-dependent two-temperature chemically non-equilibrium modelling of high-power Ar–N2 pulse-modulated inductively coupled plasmas at atmospheric pressure. J Phys D Appl Phys 39:307–319

    CAS  Google Scholar 

  85. Tanaka Y, Fujita A, Uesugi Y, Ishijima T, Yukimoto T, Kawaura H (2019) A three-dimensional two-temperature model of loop-type of ar inductively coupled thermal plasmas for large-area materials processing. In: 24th international symposium on plasma chemistry (ISPC 24), Naples, Italy, 9–14 June 2019

  86. Tanaka M, Maruyama H, Hashizume T, Matsuura T, Watanabe T (2019) Fluctuation phenomena in diode-rectified multiphase ac arc for improvement of electrode erosion. In: 24th international symposium on plasma chemistry (ISPC 24), Naples, Italy, 9–14 June 2019

  87. Trelles JP, Pfender E, Heberlein JVR (2007) Non-equilibrium modeling of arc plasma torches. J Phys D Appl Phys 40(19):5937–5952

    CAS  Google Scholar 

  88. Trelles JP (2013) Formation of self-organized anode patterns in arc discharge simulations. Plasma Sources Sci Technol 22(2):025017

    Google Scholar 

  89. Trelles JP (2013) Computational study of flow dynamics from a dc arc plasma jet. J Phys D Appl Phys 46(25):255201

    Google Scholar 

  90. Trelles JP (2014) Electrode patterns in arc discharge simulations: effect of anode cooling. Plasma Sources Sci Technol 23(5):054002

    Google Scholar 

  91. Trelles JP (2016) Pattern formation and self-organization in plasmas interacting with surfaces. J Phys D Appl Phys 49(39):393002

    Google Scholar 

  92. Trelles JP (2018) Advances and challenges computational fluid dynamics modeling of atmospheric pressure plasmas. Plasma Sources Sci Technol 27:093001

    Google Scholar 

  93. Trelles JP (2019) Nonequilibrium phenomena in thermal plasmas. In: 24th international symposium on plasma chemistry (ISPC 24), Naples, Italy, 9–14 June 2019

  94. van Rooij GJ, Akse HN, Bongers WA, van de Sanden MCM (2018) Plasma for electrification of chemical industry: a case study on CO2 reduction. Plasma Phys Control Fusion 60:014019

    Google Scholar 

  95. Vardelle A, Moreau C, Themelis NJ, Chazelas C (2015) A perspective on plasma spray technology. Plasma Chem Plasma Process 35:491–509

    CAS  Google Scholar 

  96. Watanabe T, Shigeta M, Atsuchi N (2006) Two-temperature chemically-non-equilibrium modeling of argon induction plasmas with diatomic gas. Int J Heat Mass Transf 49:4867–4876

    CAS  Google Scholar 

  97. Wu Y, Chen Z, Yang F, Cressault Y, Murphy AB, Guo A, Liu Z, Rong M, Sun H (2015) Two-temperature thermodynamic and transport properties of SF6–Cu plasmas. J Phys D Appl Phys 48:415205

    Google Scholar 

  98. Wutzke A, Pfender E, Eckert ERG (1967) Study of electric-arc behavior with superimposed flow. AIAA J 5:707

    Google Scholar 

  99. Xiang J, Chen FF, Park H, Murphy AB (2019) Metal vapour transport in tungsten–inert-gas welding. In: 24th international symposium on plasma chemistry (ISPC 24), Naples, Italy, 9–14 June 2019

  100. Yang G, Heberlein J (2007) Instabilities in the anode region of atmospheric pressure arc plasmas. Plasma Sources Sci Technol 16:529

    CAS  Google Scholar 

  101. Zhang XN, Li HP, Murphy AB, Xia WD (2013) A numerical model of non-equilibrium thermal plasmas. I. Transport properties. Phys Plasmas 20:033508

    Google Scholar 

  102. Zhang XN, Li HP, Murphy AB, Xia WD (2015) Comparison of the transport properties of two-temperature argon plasmas calculated using different methods. Plasma Sources Sci Technol 24:035011

    Google Scholar 

  103. Zhukovskii R, Chazelas C, Vardelle A, Rat V, Distler B (2018) Effect of boundary conditions on reliability of DC plasma models. In: International thermal spray conference and exposition (ITSC 2018), Orlando, Florida, USA, 7–10 May 2018

Download references

Acknowledgements

The authors acknowledge financial support from the U.S. Department of Energy through award DE-SC0018230 and the U.S. National Science Foundation through Award CBET-1552037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Trelles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trelles, J.P. Nonequilibrium Phenomena in (Quasi-)thermal Plasma Flows. Plasma Chem Plasma Process 40, 727–748 (2020). https://doi.org/10.1007/s11090-019-10046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10046-1

Keywords

Navigation