Skip to main content
Log in

Ab Initio Chemical Kinetics for the Thermal Decomposition of SiH2+ and SiH3+ Ions and Related Reverse Ion–Molecule Reactions of Interest to PECVD of α-Si:H Films

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The mechanisms and kinetics for the thermal decomposition of SiH2+ and SiH3+ ions, and related reverse reactions involving their ion fragments have been investigated for the first time by using ab initio molecular orbital and variational RRKM calculations. Geometries of all species involved the title reactions have been optimized by the CCSD(T), CCSD, and MP2 methods with the Aug-CC-pVTZ basis set while their single point energies have been refined by the CCSD(T)/CBS calculation for all the three levels for comparison. The barrierless processes involved have been calculated at the CASPT2//CASSCF/Aug-CC-pVTZ level of theory. The potential energy surfaces indicate that the SiH2+ and SiH3+ ions can eliminate an H atom via barrierless processes with dissociation energies of 48.4 and 91.5 kcal mol−1, respectively, or eliminate an H2 molecule via tight transition states at TS1 (38.5 kcal mol−1) and TS3 (59.9 kcal mol−1) giving H2 + Si+ (21.3 kcal mol−1) and H2 + SiH+ (36.7 kcal mol−1), respectively, at the CCSD(T)/CBS//CCSD(T)/Aug-CC-pVTZ level of theory. The rate constants for the reactions predicted for a wide range of T,P-conditions reveal that they increase with rising temperature and pressure and H2 elimination is the major channel in each of the decomposition reactions. The relative energies predicted by different methods agree closely; the predicted heats of formation for various species are in good agreement with available experimental values. The predicted rate constants for the forward and reverse reactions may be employed for kinetic modeling of PECVD processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nishizaki S, Ohdaira K, Matsumura H (2009) Comparison of a-Si TFTs fabricated by Cat-CVD and PECVD methods. Thin Solid Films 517:3581–3583

    Article  CAS  Google Scholar 

  2. Ay F, Aydinli A (2004) Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt Mater 26:33–46

    Article  CAS  Google Scholar 

  3. Iliescu C, Chen BT (2008) Thick and low-stress PECVD amorphous silicon for MEMS applications. J Micromech Microeng 18:015024

    Article  Google Scholar 

  4. Liu L, Liu WG, Cao N, Cai CL (2013) Study on the performance of PECVD silicon nitride thin films. Def Technol 9:121–126

    Article  Google Scholar 

  5. Iliescu C, Tay FEH, Wei J (2006) Low stress PECVD–SiNx layers at high deposition rates using high power and high frequency for MEMS applications. J Micromech Microeng 16:869–874

    Article  CAS  Google Scholar 

  6. Matsuda A (2004) Thin-film silicon-growth process and solar cell application. Jpn J Appl Phys 43:7909–7920

    Article  CAS  Google Scholar 

  7. Wu SY, Lee YM, Wu JS, Lin MC (2014) Ab initio chemical kinetics for the unimolecular decomposition of Si2H5 radical and related reverse bimolecular reactions. Int J Quantum Chem 114:278–288

    Article  CAS  Google Scholar 

  8. Raghunath P, Lin MC (2013) Ab initio chemical kinetics for SiH2 + Si2H6 and SiH3 + Si2H5 reactions and the related unimolecular decomposition of Si3H8 under a-Si/H CVD conditions. J Phys Chem A 117:10811–10823

    Article  CAS  Google Scholar 

  9. Huang WF, Chen HT, Lin MC (2013) Computational investigation of the adsorption and reactions of SiHx (x = 0–4) on TiO2 anatase (101) and rutile (110) surfaces. Int J Quantum Chem 113:1696–1708

    Article  CAS  Google Scholar 

  10. Raghunath P, Lee YM, Wu SY, Wu JS, Lin MC (2013) Ab initio chemical kinetics for reactions of H atoms with SiHx (x = 1–3) radicals and related unimolecular decomposition processes. Int J Quantum Chem 113:1735–1746

    Article  CAS  Google Scholar 

  11. Raghunath P, Lin MC (2010) Ab initio chemical kinetics for SiH3 reactions with SixH2x+2 (x = 1–4). J Phys Chem A 114:13353–13361

    Article  CAS  Google Scholar 

  12. Varma DH, Raghunath P, Lin MC (2010) Ab initio chemical kinetics for the reaction of H atom with Si3H8. J Phys Chem A 114:3642–3648

    Article  CAS  Google Scholar 

  13. Wu SY, Raghunath P, Wu JS, Lin MC (2010) Ab initio chemical kinetic study for reactions of H atoms with SiH4 and Si2H6: comparison of theory and experiment. J Phys Chem A 114:633–639

    Article  CAS  Google Scholar 

  14. Nguyen TN, Lee YM, Wu JS, Lin MC (2017) Capturing H and H2 by SiH +x (x ≤ 4) ions: comparison between Langevin and quantum statistical models. Jpn J Appl Phys 56:026101

    Article  Google Scholar 

  15. Nguyen TN, Lee YM, Wu JS, Lin MC (2017) Ab initio chemical kinetics for the thermal decomposition of SiH4 + ion and related reverse ion-molecule reactions of interest to PECVD of α-Si: H films. Plasma Chem Plasma Process 37:1249–1264

    Article  CAS  Google Scholar 

  16. Nguyen TN, Lin MC (2017) Ab initio chemical kinetics for SiHx reactions with Si2Hy (x = 1, 2, 3, 4; y = 6, 5, 4, 3; x + y = 7) under a-Si: H CVD condition. Int J Chem Kinet 49:197–208

    Article  CAS  Google Scholar 

  17. Hess GG, Lampe FW (1966) Ionic reactions in gaseous monosilane. J Chem Phys 44:2257

    Article  CAS  Google Scholar 

  18. Henis JMS, Stewart GW, Tripodi MK, Gaspar PP (1972) Ion-molecule reactions in silane. J Chem Phys 57:389

    Article  CAS  Google Scholar 

  19. Basner R, Schmidt M, Tarnovsky V, Becker K, Deutsch H (1997) Dissociative ionization of silane by electron impact. Int J Mass Spectrom Ion Process 171:83–93

    Article  CAS  Google Scholar 

  20. Cooper G, Ibuki T, Brion CE (1990) Absolute oscillator strengths for photoabsorption, photoionization and ionic photofragmentation of silane. I. The valence shell. Chem Phys 140:133–145

    Article  CAS  Google Scholar 

  21. Bleecker DK, Herrebout D, Bogaerts A, Gijbels R, Descamps P (2003) One-dimensional modeling of a capacitively coupled rf plasma in silane/helium, including small concentrations of O2 and N2. J Phys D Appl Phys 36:1826–1833

    Article  Google Scholar 

  22. Kushner MJ (1992) Simulation of the gas phase processes in remote plasma activated chemical vapor deposition of silicon dielectrics using rare gas–silane–ammonia mixtures. J Appl Phys 71:4173

    Article  CAS  Google Scholar 

  23. Potzinger P, Larnpe FW (1969) An electron impact study of ionization and dissociation of monosilane and disilane. J Phys Chem 73:3912

    Article  CAS  Google Scholar 

  24. Krishnakumar E, Srivastava SK (1995) Ionization cross sections of silane and disilane by electron impact. Contrib Plasma Phys 35:395–404

    Article  CAS  Google Scholar 

  25. Pople JA, Curtiss LA (1987) Theoretical thermochemistry. 2. Ionization energies and proton affinities of AHn species (A = C to F and Si to Cl); heats of formation of their cations. J Phys Chem 91:155–162

    Article  CAS  Google Scholar 

  26. Berkowitz J, Greene JP, Cho H, Ruščić B (1987) Photoionization mass spectrometric studies of SiHn (n = 1–4). J Chem Phys 86:1235

    Article  CAS  Google Scholar 

  27. Börlin K, Heinis T, Jungen M (1986) Photoionization mass spectrometry of silane. Chem Phys 103:93

    Article  Google Scholar 

  28. Ding A, Cassidy RA, Cordis LS, Lampe FW (1985) The photoionization spectra of effusive and supersonic molecular beams of monosilane. J Chem Phys 83:3426

    Article  CAS  Google Scholar 

  29. Allen WN, Cheng TMH, Lampe FW (1977) Ion–molecule reactions in SiH4–D2 mixtures. J Chem Phys 66:3371

    Article  CAS  Google Scholar 

  30. Boo BH, Armentrout PB (1987) Reaction of silicon ion (2P) with Silane (SiH4, SiD4). Heats of formation of SiHn, SiH +n (n = 1, 2, 3) and Si2H +n (n = 0, 1, 2, 3). Remarkable isotope exchange reaction involving four hydrogen shifts. J Am Chem Soc 109:3549–3559

    Article  CAS  Google Scholar 

  31. Boo BH, Armentrout PB (1987) Energetics and reaction mechanisms of reactions of SiH+ + D2, SiD+ + H2, and collision induced dissociation of SiD3 +. J Phys Chem 91:5777–5781

    Article  CAS  Google Scholar 

  32. Purvis GD III, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  33. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) A fifth-order perturbation comparison of electron correlation theories. Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  34. Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction—a general technique for determining electron correlation energies. J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  35. Frisch MJ et al (2010) Gaussian 09, revision C.01. Gaussian Inc., Wallingford

    Google Scholar 

  36. Woon DE, Dunning TH (1995) Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. J Chem Phys 103:4572

    Article  CAS  Google Scholar 

  37. Raghunath P, Nghia NT, Lin MC (2014) Ab initio chemical kinetics of key processes in the hypergolic ignition of hydrazine and nitrogen tetroxide. Adv Quantum Chem 69:253–301

    Article  CAS  Google Scholar 

  38. Peterson KA, Woon DE, Dunning TH (1994) Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H + H2 → H2 + H reaction. J Chem Phys 100:7410

    Article  CAS  Google Scholar 

  39. Wardlaw DM, Marcus RA (1988) On the statistical theory of unimolecular processes. Adv Chem Phys 70:231

    CAS  Google Scholar 

  40. Klippenstein SJ, Wagner AF, Dunbar RC, Wardlaw DM, Robertson SH (1999) VARIFLEX, version 1.00. Argonne National Laboratory, Argonne

    Google Scholar 

  41. Baer T, Hase WL (1996) Unimolecular reactions dynamics: theory and experiment. Oxford University Press, Oxford

    Google Scholar 

  42. Eckart C (1930) The penetration of a potential barrier by electrons. Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  43. Fernandez-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) Modeling the kinetics of bimolecular reactions. Chem Rev 106:4518–4584

    Article  CAS  Google Scholar 

  44. Paddon-Row MN, Wong SS (1987) On the structure of the SiH4 + cation and its potential energy surface for rearrangement and dissociation: an ab initio M.O. study. J Chem Soc, Chem Commun 4:1585

    Article  Google Scholar 

  45. Wang L, He YL (2008) Halogenated silanes, radicals, and cations: theoretical predictions on ionization energies, structures and potential energy surfaces of cations, proton affinities, and enthalpies of formation. Int J Mass Spectrom 276:56–76

    Article  CAS  Google Scholar 

  46. NIST Chemistry WebBook. https://webbook.nist.gov/cgi/cbook.cgi?ID=C31241664&Units=SI&Mask=1000#Diatomic. Accessed 15 Jan 2019

  47. Irikura KK (2007) Experimental vibrational zero-point energies: diatomic molecules. J Phys Chem Ref Data 36:389–397

    Article  CAS  Google Scholar 

  48. Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics. Hemisphere, New York

    Google Scholar 

  49. Berkowitz J, Greene JP, Cho H, Ruščić B (1987) Photoionization mass spectrometric studies of SiHn (n=1–4). J Chem Phys 86:1235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper (work) is supported by Ministry of Science and Technology, Taiwan (Grant No. MOST107-3017-F009-003) and Ministry of Education, Taiwan (SPROUT Project–Center for Emergent Functional Matter Science of National Chiao Tung University). We also acknowledge the National Center for High-Performing Computers for the use of its facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.N., Lee, Y.M., Wu, J.S. et al. Ab Initio Chemical Kinetics for the Thermal Decomposition of SiH2+ and SiH3+ Ions and Related Reverse Ion–Molecule Reactions of Interest to PECVD of α-Si:H Films. Plasma Chem Plasma Process 39, 1559–1573 (2019). https://doi.org/10.1007/s11090-019-10012-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-10012-x

Keywords

Navigation