Skip to main content
Log in

A Study on the NF3 Plasma Etching Reaction with Cobalt Oxide Grown on Inconel Base Metal Surface

  • Original paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this study, the reaction of NF3 gas plasma with cobalt oxide (Co3O4) film grown on the Inconel base metal surface was investigated. Experimental results showed the plasma etching rate as high as 3.36 μm/min at 350 °C under 220 W of plasma power with negative 300 DC bias voltage. AES and XPS analyses revealed that reaction product is CoF2, demonstrating that the plasma processing is a fluorination reaction. Based on the linear kinetics law, the activation energy of the etching reaction was derived to be 66.93 kJ/mol. This study demonstrates that the plasma decontamination technique can be applied to efficiently and effectively remove radioactive surface contaminants such as 60Co hiding in the oxide film on the surfaces of the metallic waste generated during decommissioning of old nuclear power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. OECD, NEA (1996) Nuclear decommissioning: recycling and reuse of scrap metals. OECD, Paris

    Google Scholar 

  2. IAEA (2008) Managing low radioactivity material from the decommissioning of nuclear facilities. Technical reports. IAEA, VIENNA

  3. Laraia M (2012) Nuclear decommissioning: planning, execution and international experience. Elsevier Science, Amsterdam

    Book  Google Scholar 

  4. Park GY, Kim C-L (2015) Chemical decontamination design for NPP decommissioning and considerations on its methodology. J Korean Radioact Waste Soc 13(3):187–199. https://doi.org/10.7733/jnfcwt.2015.13.3.187

    Article  Google Scholar 

  5. Martz JC, Hess DW, Haschke JM, Ward JW, Flamm BF (1991) Demonstration of plutonium etching in a CF4O2 RF glow discharge. J Nucl Mater 182:277–280. https://doi.org/10.1016/0022-3115(91)90442-A

    Article  CAS  Google Scholar 

  6. Veilleux JM, El-Genk MS, Chamberlin EP, Munson C, FitzPatrick J (2000) Etching of UO2 in NF3 RF plasma glow discharge. J Nucl Mater 277(2):315–324. https://doi.org/10.1016/S0022-3115(99)00154-3

    Article  CAS  Google Scholar 

  7. Windarto HF, Matsumoto T, Akatsuka H, Sakagishf K, Suzuki M (2000) Removal of oxide film prepared under BWR condition by using atmospheric CF4/O2 plasma decontamination process. J Nucl Sci Technol 37(10):913–918. https://doi.org/10.1080/18811248.2000.9714972

    Article  CAS  Google Scholar 

  8. Yang X, Moravej M, Babayan SE, Nowling GR, Hicks RF (2004) Etching of uranium oxide with a non-thermal, atmospheric pressure plasma. J Nucl Mater 324(2):134–139. https://doi.org/10.1016/j.jnucmat.2003.09.012

    Article  CAS  Google Scholar 

  9. Fujiwara K, Furukawa S, Adachi K, Amakawa T, Kanbe H (2006) A new method for decontamination of radioactive waste using low-pressure arc discharge. Corros Sci 48(6):1544–1559. https://doi.org/10.1016/j.corsci.2005.04.010

    Article  CAS  Google Scholar 

  10. Kim Y-H, Choi Y-H, Kim J-H, Ju WT, Paek K-H, Y-s Hwang (2002) Decontamination of radioactive metal surface by atmospheric pressure ejected plasma source. Surf Coat Technol 171:317–320. https://doi.org/10.1016/S0257-8972(03)00293-7

    Article  Google Scholar 

  11. Y-s Kim, J-y Min, K-k Bae, M-S Yang (1999) Uranium dioxide reaction in CF4/O2 RF plasma. J Nucl Mater 270(1):253–258. https://doi.org/10.1016/S0022-3115(98)00906-4

    Article  Google Scholar 

  12. Kim YS, Jeon SH, Jung CH (2003) Fluorination reaction of uranium dioxide in CF4/O2/N2 r.f. plasma. Ann Nucl Energy 30(11):1199–1209. https://doi.org/10.1016/S0306-4549(03)00039-2

    Article  CAS  Google Scholar 

  13. Y-s Kim, Y-d Seo, Koo M (2004) Decontamination of metal surface by reactive cold plasma: removal of cobalt. J Nucl Sci Technol 41(11):1100–1105. https://doi.org/10.1080/18811248.2004.9726335

    Article  Google Scholar 

  14. Jeon SH, Kim YS, Jung CH (2008) Cold plasma processing and plasma chemistry of metallic cobalt surface. Plasma Chem Plasma Process 28(5):617. https://doi.org/10.1007/s11090-008-9148-9

    Article  CAS  Google Scholar 

  15. Jeon SH, Ys Kim (2008) A study on plasma etching reaction of cobalt for metallic surface decontamination. J Korean Radioact Waste Soc 6(1):17–23

    Google Scholar 

  16. Tatenuma K, Hishinuma Y, Tomatsuri S, Ohashi K, Usui Y (1998) Newly developed decontamination technology based on gaseous reactions converting to carbonyl and fluoric compounds. Nucl Technol 124(2):147–164. https://doi.org/10.13182/NT98-A2915

    Article  CAS  Google Scholar 

  17. Clay KJ, Speakman SP, Amaratunga GAJ, Silva SRP (1996) Characterization of a-C:H: N deposition from CH4/N2 rf plasmas using optical emission spectroscopy. J Appl Phys 79(9):7227–7233. https://doi.org/10.1063/1.361439

    Article  CAS  Google Scholar 

  18. Krstulović N, Labazan I, Milošević S, Cvelbar U, Vesel A, Mozetič M (2006) Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil. J Phys D Appl Phys 39(17):3799

    Article  CAS  Google Scholar 

  19. Bogdanowicz R (2008) Investigation of H2:CH4 plasma composition by means of spatially resolved optical spectroscopy. Acta Physica Polonica A 114(6 A):A33–A38

    Article  Google Scholar 

  20. Krstulović N, Cvelbar U, Vesel A, Milošević S, Mozetić M (2009) An optical-emission-spectroscopy characterization of oxygen plasma during the oxidation of aluminium foils. Materiali in Tehnologije 43(5):245–249

    Google Scholar 

  21. Greenwood NN, Earnshaw A (2012) Chemistry of the elements. Elsevier Science, Amsterdam

    Google Scholar 

  22. Nicholls D (1973) 41 - COBALT. In: Nicholls D (ed) The chemistry of iron, cobalt and nickel. Pergamon, New York, pp 1053–1107. https://doi.org/10.1016/B978-0-08-018874-4.50006-6

    Chapter  Google Scholar 

  23. Childs KD, Hedberg CL (1995) Handbook of auger electron spectroscopy: a book of reference data for identification and interpretation in auger electron spectroscopy. Physical Electronics, Chanhassen

    Google Scholar 

  24. Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. Wiley, New York

    Book  Google Scholar 

  25. Scheele RD, McNamara BK, Casella AM, Kozelisky AE, Neiner D (2013) Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides. J Fluor Chem 146:86–97. https://doi.org/10.1016/j.jfluchem.2012.12.013

    Article  CAS  Google Scholar 

  26. Niu X, Sun L, Wang Y, Wu H, Xu X (2010) NF3 decomposition over some metal oxides in the absence of water. J Nat Gas Chem 19(5):463–467. https://doi.org/10.1016/S1003-9953(09)60107-9

    Article  CAS  Google Scholar 

  27. NIST X-ray Photoelectron Spectroscopy Database (2012) U.S National Institute of Standards and Technology (NIST), Gaithersburg. https://srdata.nist.gov/xps/elm_in_comp_res.aspx?elm1=Co. Accessed 22 Nov 2018

  28. Moulder JF, Chastain J (1992) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics Division, Perkin-Elmer Corporation, Eden Praine

    Google Scholar 

  29. Li W, Groult H, Borkiewicz OJ, Dambournet D (2018) Decomposition of CoF3 during battery electrode processing. J Fluor Chem 205:43–48. https://doi.org/10.1016/j.jfluchem.2017.11.012

    Article  CAS  Google Scholar 

  30. Tc C, Hd W (1984) Tungsten etching in CF4 and SF6 discharges. J Electrochem Soc 131(1):115–120

    Article  Google Scholar 

  31. El-Genk Mohamed S, Saber Hamed H, Veilleux J (2006) Analysis and modeling of decontamination experiments of depleted uranium dioxide in RF plasma. Ann N Y Acad Sci 891(1):207–215. https://doi.org/10.1111/j.1749-6632.1999.tb08767.x

    Article  Google Scholar 

  32. Gasser RPH (1985) An introduction to chemisorption and catalysis by metals. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP: Ministry of Science, ICT, and Future Planning) (No. NRF-2017M2B2B1072888) and by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry, and Energy, Republic of Korea (No. 20184030201970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Soo Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kim, K. & Kim, YS. A Study on the NF3 Plasma Etching Reaction with Cobalt Oxide Grown on Inconel Base Metal Surface. Plasma Chem Plasma Process 39, 1145–1159 (2019). https://doi.org/10.1007/s11090-019-09979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09979-4

Keywords

Navigation