Skip to main content
Log in

Plasma-Catalytic Dry Reforming of CH4 over Calcium Oxide: Catalyst Structural and Textural Modifications

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The coupling of catalyst and nonthermal plasma for the dry reforming of methane was investigated with a special attention to the textural and structural catalyst modifications under plasma discharge. The reaction was performed using calcium oxide as material located into the DBD plasma reactor, while the deposited power was fixed at 8 W and the total gas flow at 40 mL/min (75% helium as diluent). The results obtained showed that CaO grain size affects the reactant transformation in the range: 250–1000 µm. CH4 and CO2 conversion increases from 18.1 to 21.1% and 8.7 to 11.2% respectively from the biggest to the smallest catalyst grain. Ethane formation is favored when the biggest particles are used, corresponding to the largest gas space between grains, suggesting the preferential recombination of CH3 radicals to form C2H6 in gaseous phase and not at the surface of the solid. The reaction was performed from room temperature to 300 °C, little effect were observed for methane conversion while high CO2 conversion was observed during the 20 min at 300 °C. The characterization of the catalyst after reaction under plasma shows structural catalyst modification and the carbonation of CaO at the highest temperatures. The amount of carbonate species was quantified and the results show that 59 monolayers of CaCO3 are obtained after 1 h of plasma at P = 8 W using a mixture with a CH4/CO2 ratio of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Adv Catal 47:65–139

    CAS  Google Scholar 

  2. Tsang SC, Claridge JB, Green MLH (1995) Catal Today 23:3–15

    Article  CAS  Google Scholar 

  3. Hou Z, Chen P, Fang H, Zheng X, Yashima T (2006) Int J Hydrog Energy 31:555–561

    Article  CAS  Google Scholar 

  4. Wang Z, Cao X-M, Zhu J, Hu P (2014) J Catal 311:469–480

    Article  CAS  Google Scholar 

  5. Hu YH, Ruckenstein E (2004) Adv Catal 48:297–345

    CAS  Google Scholar 

  6. Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A (2002) Phys Chem Chem Phys 4:668–675

    Article  CAS  Google Scholar 

  7. Wang B, Xu G (2003) J Nat Gas Chem 12:178–182

    CAS  Google Scholar 

  8. Eliasson B, Egli W, Kogelschatz U (1994) Pure Appl Chem 66(6):1275–1286

    Article  Google Scholar 

  9. Neyts EC, Ostrikov K, Sunkara MK, Bogaerts A (2015) Chem Rev 115:13408–13446

    Article  CAS  PubMed  Google Scholar 

  10. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) J Phys D Appl Phys 44:274007–274017

    Article  CAS  Google Scholar 

  11. Jo S, Kim T, Lee DH, Kang WS, Song YH (2014) Plasma Chem Plasma Process 34:175–186

    Article  CAS  Google Scholar 

  12. Scapinello M, Delikonstantis E, Stefanidis GD (2017) Chem Eng Process Intensif 117:120–140

    Article  CAS  Google Scholar 

  13. Goujard V, Tatibouët JM, Batiot-Dupeyrat C (2009) IEEE Trans Plasma Sci 37(12):2342–2346

    Article  CAS  Google Scholar 

  14. Yap D, Tatibouët JM, Batiot-Dupeyrat C (2018) Catal Today 299:263–271

    Article  CAS  Google Scholar 

  15. Gadzhieva NN (2003) High Energy Chem 37(1):43–49

    Article  Google Scholar 

  16. Zheng X, Tan S, Dong L, Li S, Chen H (2015) J Power Sour 274:286–294

    Article  CAS  Google Scholar 

  17. Jiang T, Li Y, Liu CJ, Xu GH, Eliasson B, Xue B (2002) Catal Today 72:229–235

    Article  CAS  Google Scholar 

  18. Zhang X, Dai B, Zhu A, Gong W, Liu C (2002) Catal Today 72:223–227

    Article  CAS  Google Scholar 

  19. Wang W, Kim HH, Van Laer K, Bogaerts A (2018) Chem Eng J 334:2467–2479

    Article  CAS  Google Scholar 

  20. Chen HL, Lee HM, Lee SH (2008) Ind Eng Chem Res 47:2122–2130

    Article  CAS  Google Scholar 

  21. Yu Q, Kong M, Liu T, Fei J, Zheng X (2012) Plasma Chem Plasma Process 32:153–163

    Article  CAS  Google Scholar 

  22. Goujard V, Tatibouët JM, Batiot-Dupeyrat C (2009) Appl Catal A Gen 353:228–235

    Article  CAS  Google Scholar 

  23. Ozkan A, Dufour T, Arnoult G, De Keyzer P, Bogaerts A, Reniers F (2015) J CO2 Util 9:74–84

    Article  Google Scholar 

  24. Brock SL, Marquez M, Suib SL, Hayashi Y, Matsumoto H (1998) J Catal 180:225–233

    Article  CAS  Google Scholar 

  25. Tu X, Whitehead JC (2014) Int J Hydrog Energy 39:9658–9669

    Article  CAS  Google Scholar 

  26. Zhang AJ, Zhu AM, Guo J, Xu Y, Shi C (2010) Chem Eng J 156:601–606

    Article  CAS  Google Scholar 

  27. Chung WC, Pan KL, Lee HM, Chang MB (2014) Energy Fuel 28:7621–7631

    Article  CAS  Google Scholar 

  28. Kasinathan P, Park S, Choi WC, Hwang YK, Chang JS, Park YK (2014) Plasma Chem Plasma Process 34:1317–1330

    Article  CAS  Google Scholar 

  29. Robertson J (2004) Eur Phys J Appl Phys 28:265–291

    Article  CAS  Google Scholar 

  30. Zhang YR, Van Laer K, Neyts EC, Bogaerts A (2016) Appl Catal B Env 185:56–67

    Article  CAS  Google Scholar 

  31. Zhang QZ, Bogaerts A (2018) Plasma Sour Sci Technol 27:35009–35019

    Article  CAS  Google Scholar 

  32. De Bie C, Van Dijk J, Bogaerts A (2015) J Phys Chem C 119:22331–22350

    Article  CAS  Google Scholar 

  33. Wang JG, Liu C, Eliassion B (2004) Energy Fuels 18:148–153

    Article  CAS  Google Scholar 

  34. Istadi I, Amin NAS (2007) Chem Eng Sci 62:6568–6581

    Article  CAS  Google Scholar 

  35. Mirghiasi Z, Bakhtiari F, Darezereshki E, Esmaeilzadeh E (2014) J Ind Eng Chem 20:113–117

    Article  CAS  Google Scholar 

  36. Holzer F, Roland U, Kopinke FD (2002) Appl Catal B Env 38:163–181

    Article  CAS  Google Scholar 

  37. Abanades JC, Alvarez D (2003) Energy Fuels 17:308–315

    Article  CAS  Google Scholar 

  38. Lee DK (2004) Chem Eng J 100:71–77

    Article  CAS  Google Scholar 

  39. Wang C, Jia L, Tan Y, Anthony E (2008) Fuel 87(7):1108–1114

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors grateful acknowledge the ANR for the financial support of the PRC program VALCO2PLAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Batiot-Dupeyrat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchoul, N., Fourré, E., Tatibouët, JM. et al. Plasma-Catalytic Dry Reforming of CH4 over Calcium Oxide: Catalyst Structural and Textural Modifications. Plasma Chem Plasma Process 39, 713–727 (2019). https://doi.org/10.1007/s11090-019-09966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-019-09966-9

Keywords

Navigation