Skip to main content
Log in

Generation of Long Laminar Plasma Jets: Experimental and Numerical Analyses

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A novel direct current non-transferred arc plasma torch that can generate silent, stable and super-long laminar plasma jets in atmospheric air is investigated. The results showed that laminar plasma jets of length ranging from 100 to 720 mm in length can be generated by controlling the gas input rate ranging from 8.5 to 15 L min−1 and the output power from 8.5 to 28 kW. The length of the plasma jets generally increased with the output power and gas flow rate. Observations of temporal evolution of the plasma jet appearance and the voltage demonstrated that the jet is highly stable in the atmospheric environment. The fluid dynamic properties of the laminar plasma jet were studied using a numerical simulation incorporating a laminar flow model and an RNG turbulent flow model. Simulation results show the expansion of a high temperature region close to the torch nozzle exit, corresponding to a bright region observed in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

C p :

Specific heat at constant pressure (J kg−1K−1)

E :

Electric field (V m−1)

T :

Temperature (K)

W :

Power (W)

I :

Current (A)

Q :

Gas flow rate (kg s−1)

k :

Turbulent kinetic energy (m2 s−2)

ε :

Dissipation rate of turbulent kinetic energy (m2 s−3)

ε r :

Net emission coefficient (W m−3sr−1)

κ :

Thermal conductivity (W m−1K−1)

μ :

Dynamic viscosity (kg m−1s−1)

μ t :

Turbulent viscosity (kg m−1s−1)

μ eff :

Effective viscosity (kg m−1s−1)

σ :

Electrical conductivity (S m−1)

ρ :

Density (kg m−3)

ϕ :

Electric potential (V)

LTE:

Local thermodynamic equilibrium

RNG:

Renormalization group methods

MHD:

Magnetohydrodynamic model

NEC:

Net emission coefficient

References

  1. Zhukov MF, Zasypkin IM (2006) Thermal plasma torches—design, characteristics, applications. Cambridge International Science Publishing, pp 1–15

  2. Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37(9):R86–R108. https://doi.org/10.1088/0022-3727/37/9/R02

    Article  CAS  Google Scholar 

  3. Fauchais PL, Heberlein JVR, Boulos MI (2014) Thermal spray fundamentals. Springer. https://doi.org/10.1007/978-0-387-68991-3

  4. Coudert JF, Rat V, Rigot D (2007) Influence of Helmholtz oscillations on arc voltage fluctuations in a dc plasma spraying torch. J Phys D Appl Phys 40(23):7357–7366. https://doi.org/10.1088/0022-3727/40/23/016

    Article  CAS  Google Scholar 

  5. Nogues E, Vardelle M, Fauchais P, Granger P (2008) Arc voltage fluctuations: comparison between two plasma torch types. Surf Coat Technol 202(18):4387–4393. https://doi.org/10.1016/j.surfcoat.2008.04.014

    Article  CAS  Google Scholar 

  6. An LT, Gao Y, Sun C (2011) Effects of anode arc root fluctuation on coating quality during plasma spraying. J Therm Spray Technol 20(4):775–781. https://doi.org/10.1007/s11666-011-9644-y

    Article  Google Scholar 

  7. Janisson S, Vardelle A, Coudert JF, Fauchais P, Meillot E (1999) Analysis of the stability of dc plasma gun operating with Ar–He–H2, gas mixtures. Ann N Y Acad Sci 891(1):407–416

    Article  CAS  Google Scholar 

  8. Solonenko OP (ed) (2003) Thermal plasma torches and technologies: plasma torches, basic studies and design. Cambridge international science publishing, pp 9–12

  9. Solonenko OP, Nishiyama H, Smirnov AV, Takana H, Jang J (2014) Visualization of arc and plasma flow patterns for advanced material processing. J Vis 18:1–15. https://doi.org/10.1007/s12650-014-0221-6

    Article  CAS  Google Scholar 

  10. Hideki Hamatani FW (2016) Development of laminar plasma shielded HF-ERW process—advanced welding process of HF-ERW 3. In: Proceedings of the 2012 9th international pipeline conference (pp 1–8)

  11. Hamatani H, Ohara M, Fuji M (1999) Development of high power hybrid plasma spraying. J Japanese Inst Met 63(1):135–143. http://ci.nii.ac.jp/naid/10002548732/en/. (in Japanese)

  12. Ma W, Pan WX, Wu CK (2005) Preliminary investigations on low-pressure laminar plasma spray processing. Surf Coat Technol 191(2–3):166–174. https://doi.org/10.1016/j.surfcoat.2004.02.011

    Article  CAS  Google Scholar 

  13. Ma W (2006) Influence of the processing conditions on the characteristics of the clad layers produced with laminar plasma technology. Appl Surf Sci 252(23):8352–8359. https://doi.org/10.1016/j.apsusc.2005.11.043

    Article  CAS  Google Scholar 

  14. Pan WX, Zhang W, Zhang W, Wu C (2001) Generation of long, laminar plasma jets at atmospheric pressure and effects of flow turbulence. Plasma Chem Plasma Process 21(1):23–35

    Article  CAS  Google Scholar 

  15. Pan WX, Meng X et al (2008) Experimental observations on the stability and 3-D characteristics of laminar/turbulent plasma jets. J Eng Thermophys 29(1):2–4 (in Chinese)

    Google Scholar 

  16. Pan WX (2006) Arc voltage fluctuation in dc laminar and turbulent plasma jets generation. Plasma Sci Technol 416(4)

  17. Meng X, Pan W, Chen X, Guo Z, Wu C (2011) Temperature measurements in a laminar plasma jet generated at reduced pressure. Vacuum 85(7):734–738. https://doi.org/10.1016/j.vacuum.2010.11.007

    Article  CAS  Google Scholar 

  18. Meng X, Pan WX, Wu CK (2004) Temperature and velocity measurement of laminar plasma jet. J Eng Thermophys 24(3):5–7 (in Chinese)

    Google Scholar 

  19. Meng X, Pan WX, Wu CK (2005) Transient measurement and analysis on heat flux distributions of partially-ionized high-temperature laminar flow jet. J Eng Thermophys 26(1):137–139 (in Chinese)

    Google Scholar 

  20. Cheng K, Chen X, Pan WX (2005) Efforts of shroud gas on laminar argon plasma jets impinging on a substrate in ambient air. J Eng Thermophys 26(6):1–3 (in Chinese)

    Google Scholar 

  21. Zhang WWX et al (1999) Modelling of laminar plasma jet impinging on a flat plate with approximate box relaxation method. Plasma Sci Technol 1:1

    Article  Google Scholar 

  22. Wang HX, Xi C, Pan WX, Kai C (2007) Comparison of the characteristics of laminar and turbulent impinging plasma jets. J Eng Thermophys 28(4):7–9 (in Chinese)

    Google Scholar 

  23. Wang H-X, Chen X, Cheng K, Pan W (2007) Modeling study on the characteristics of laminar and turbulent argon plasma jets impinging normally upon a flat plate in ambient air. Int J Heat Mass Transf 50(3–4):734–745. https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.002

    Article  CAS  Google Scholar 

  24. Cheng K, Chen X, Wang H-X, Pan W (2006) Modeling study of shrouding gas effects on a laminar argon plasma jet impinging upon a flat substrate in air surroundings. Thin Solid Films 506–507:724–728. https://doi.org/10.1016/j.tsf.2005.08.148

    Article  CAS  Google Scholar 

  25. Pan WMX (2007) Comparative observation of Ar, Ar–H2 and Ar–N2 DC arc plasma jets and their arc root behaviour at reduced pressure. Plasma Sci Technol 9:2

    Google Scholar 

  26. Peng Y (2012) Numerical simulation study on flow fields in a non-transferred direct current plasma generator operating at reduced pressure. M. D. thesis, Institute of Mechanics, China Academy of Science

  27. Xu DY (2003) Studies of long laminar plasma jet generation and characteristics. Ph.D. thesis, Tsinghua University

  28. Wang Hai-Xing, Chen Xi, Pan Wenxia (2007) Modeling study on the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Plasma Chem Plasma Process 27(2):141–162. https://doi.org/10.1007/s11090-006-9047-x

    Article  CAS  Google Scholar 

  29. Wang H-X, Chen X, Pan W (2007) Effects of the length of a cylindrical solid shield on the entrainment of ambient air into turbulent and laminar impinging argon plasma jets. Plasma Chem Plasma Process 28(1):85–105. https://doi.org/10.1007/s11090-007-9109-8

    Article  CAS  Google Scholar 

  30. Xu D-Y, Chen X, Pan W (2005) Effects of natural convection on the characteristics of a long laminar argon plasma jet issuing horizontally into ambient air. Int J Heat Mass Transf 48(15):3253–3255. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.039

    Article  CAS  Google Scholar 

  31. Xu D-Y, Chen X, Cheng K (2003) Three-dimensional modelling of the characteristics of long laminar plasma jets with lateral injection of carrier gas and particulate matter. J Phys D Appl Phys 36(13):1583–1594

    Article  CAS  Google Scholar 

  32. Huang H, Pan W, Guo Z, Wu C (2008) Laminar/turbulent plasma jets generated at reduced pressure. IEEE Trans Plasma Sci 36(4):1052–1053

    Article  CAS  Google Scholar 

  33. Duan Z, Heberlein J (2002) Arc instabilities in a plasma spray torch. J Therm Spray Technol 44–51

  34. Liu SH, Li CX, Zhang SH et al (2018) A novel structure of YSZ coatings by atmospheric laminar plasma spraying technology. Scr Mater 153:73–76

    Article  CAS  Google Scholar 

  35. Liu SH, Li CX et al (2018) Development of long laminar plasma jet on thermal spraying process: microstructures of zirconia coatings. Surf Coat Technol 337:241–249

    Article  CAS  Google Scholar 

  36. Liu S-H, Li C-X, Murphy AB, Li CJ (2018) Numerical simulation of the flow characteristics inside a novel plasma spray torch. Plasma Chem Plasma Process (under review)

  37. Mohanty P, Stanisic J, Stanisic J, George A, Wang Y (2010) A study on arc instability phenomena of an axial injection cathode plasma Torch. J Therm Spray Technol 19(1–2):465–475. https://doi.org/10.1007/s11666-009-9444-9

    Article  Google Scholar 

  38. Osaki K, Fukumasa O, Kobayashi A (2000) High thermal efficiency-type laminar plasma jet generator for plasma processing. Vacuum 59:47–54

    Article  CAS  Google Scholar 

  39. Solonenko OP, Zhukov MF (eds) (1994) Thermal plasma and new materials technology vol 1 investigation and design of thermal plasma generators. Cambridge Interscience Publishing, pp 5–43

  40. Vilotijevic M, Dacic B, Bozic D (2009) Velocity and texture of a plasma jet created in a plasma torch with fixed minimal arc length. Plasma Sources Sci Technol 18(1):15016. https://doi.org/10.1088/0963-0252/18/1/015016

    Article  CAS  Google Scholar 

  41. Wang JL (2015) Investments of mental rapid manufacturing by laminar plasma torch. University of Science and Technology of China, M.D. dissertation. (In Chinese)

  42. ANSYS Inc. (2016) ANSYS fluent theory guide. USA

  43. Cram LE (1985) Statistical evaluation of radiative power losses from thermal plasmas due to spectral lines. J Phys D Appl Phys 18(3):401–411. https://doi.org/10.1088/0022-3727/18/3/009

    Article  CAS  Google Scholar 

  44. Murphy AB, Arundelli CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chem Plasma Process 14(4):451–490. https://doi.org/10.1007/BF01570207

    Article  CAS  Google Scholar 

  45. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications. Springer

  46. Pfender E, Fincke J, Spores R (1991) Entrainment of cold gas into thermal plasma jets. Plasma Chem Plasma Process 11(4):529–543

    Article  CAS  Google Scholar 

  47. Murphy AB, Kovitya P (1993) Mathematical model and laser-scattering temperature measurements of a direct-current plasma torch discharging into air. J Appl Phys 73(10):4759–4769. https://doi.org/10.1063/1.353840

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Ren-zhong Huang from the Department of New Materials of Guangzhou Non-Ferrous Metal Research Institute for his selfless help with the computer programming. This work was supported by the Natural Key R&D Program of China (Basic Research Project, Grant No. 2017YFB0306104), the Ph.D. Short-term Academic Visiting Program of Graduate School of Xi’an Jiaotong University and National Ph.D. Degree Program of the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Xin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (GIF 6103 kb)

Supplementary material 2 (TIFF 4324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SH., Zhang, SL., Li, CX. et al. Generation of Long Laminar Plasma Jets: Experimental and Numerical Analyses. Plasma Chem Plasma Process 39, 377–394 (2019). https://doi.org/10.1007/s11090-018-9949-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9949-4

Keywords

Navigation