Skip to main content
Log in

A Plasma-Initiated Graft Polymerization of Methyl Methacrylate in the Presence of a Reverse ATRP Catalyst

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A plasma-initiated graft polymerization of methyl methacrylate (MMA) was carried out on the high-density polyethylene (HDPE) surface in the presence of the reverse atom transfer radical polymerization (RATRP) catalyst of CuCl2/2,2′-bipyridine (bpy). The polymerization kinetics presented a linear relation with polymerization time. A well-defined PMMA brush was fabricated on the surface, evidenced by the linear growth of molecular weights with conversions and narrow polymer dispersity (Ð = 1.31). Graft amounts were indicated to increase proportionally with the increase of conversions and molecular weights. Subsequently, a solvent-responsive surface was prepared by the block copolymerization of 2-hydroxyethyl methacrylate (HEMA) on the PMMA grafted surface. The polymerization is suggested to proceed via a RATRP mechanism, when plasma radicals could behave similarly as conventional radicals in forming dormant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 3
Fig. 11

Similar content being viewed by others

References

  1. Long SJ, Wan F, Yang W, Guo H, He XY, Ren J, Gao JZ (2013) Fabrication and characterization of tunable wettability surface on copper substrate by poly(ionic liquid) modification via surface-initiated nitroxide-mediated radical polymerization. J Appl Polym Sci 128:2687–2693

    Article  CAS  Google Scholar 

  2. Contreras-Lpóez D, Albores-Velasco M, Saldĺvar-Guerra E (2017) Isoprene (co)polymers with glycidyl methacrylate via bimolecular and unimolecular nitroxide mediated radical polymerization. J Appl Polym Sci 134:45108

    Article  CAS  Google Scholar 

  3. Takada K, Matsumoto A (2017) Reversible addition-fragmentation chain transfer polymerization of diisopropyl fumarate using various dithiobenzoates as chain transfer agents. J Polym Sci Part A Polym Chem 55:3266–3275

    Article  CAS  Google Scholar 

  4. Zeinali E, Haddadi-Asl V, Roghani-Mamaqani H (2018) Synthesis of dual thermo- and pH-sensitive poly(-isopropylacrylamideco-acrylic acid)-grafted cellulose nanocrystals by reversible addition-fragmentation chain transfer polymerization. J Biomed Mater Res 106:231–243

    Article  CAS  Google Scholar 

  5. Wang JS, Matyjaszewski K (1995) Controlled/”living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28:7901–7910

    Article  CAS  Google Scholar 

  6. Yang DY, Wang J, Han J, Khan MY, Xie XL, Xue ZG (2017) Initiator-free atom transfer radical polymerization of methyl methacrylate based on FeBr 3(PPh3)n system. J Polym Sci Part A Polym Chem 55:3842–3850

    Article  CAS  Google Scholar 

  7. Matyjaszewski K, Patten TE, Xia JH (1997) Controlled/“living” radical polymerization. kinetics of the homogeneous atom transfer radical polymerization of styrene. J Am Chem Soc 119:674–680

    Article  CAS  Google Scholar 

  8. Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288

    Article  CAS  PubMed  Google Scholar 

  9. Calafel I, Muñoz ME, Santamarĺa A, Boix M, Conde JL, Pascual B (2015) The effect of crystallites on the rheological properties of microphase-separated PVC-PBA-PVC triblock copolymers obtained by single electron transfer-degenerative chain transfer living radical polymerization. J Vinyl Addit Technol 21:24–32

    Article  CAS  Google Scholar 

  10. Xu WJ, Zhang WS, Li W, Yan JL, Shen GY, Li J (2012) Synthesis of poly(vinyl acetate) by degenerative transfer polymerization in the presence of iodine. J Appl Polym Sci 126:104–109

    Article  CAS  Google Scholar 

  11. Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990

    Article  CAS  PubMed  Google Scholar 

  12. Krys P, Schroeder H, Buback J, Buback M, Matyjaszewski K (2016) The borderline between simultaneous reverse and normal initiation and initiators for continuous activator regeneration ATRP. Macromolecules 49:7793–7803

    Article  CAS  Google Scholar 

  13. Chen GJ, Zhu XL, Zhu J, Cheng ZP (2004) Plasma-initiated controlled/living radical polymerization of methyl methacrylate in the presence of 2-cyanoprop-2-yl 1-dithionaphthalate (CPDN). Macromol Rapid Commun 25:818–824

    Article  CAS  Google Scholar 

  14. Zhang ZB, Zhu XL, Zhu J, Cheng ZP (2006) Reversible addition fragmentation chain transfer (RAFT) emulsion polymerization of methyl methacrylate via a plasma-initiated process. Polym Bull 56:539–548

    Article  CAS  Google Scholar 

  15. You YZ, Hong CY, Bai RK, Pan CY, Wang J (2002) Photo-initiated living free radical polymerization in the presence of dibenzyl trithiocarbonate. Macromol Chem Phys 203:477–483

    Article  CAS  Google Scholar 

  16. Cho M, Chung H, Yoon J (2003) A disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Appl Environ Microbiol 69:2284–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson DR, Osada Y, Bell AT, Shen M (1981) Studies of the mechanism and kinetics of plasma-initiated polymerization of methyl methacrylate. Macromolecules 14:118–124

    Article  CAS  Google Scholar 

  18. Wang MY, Wang SG, Zhang WB, Xu KW (2012) Low temperature plasma-initiated copolymerization of acrylamide and sodium acrylate. Adv Mater Res 391–392:1164–1167

    Google Scholar 

  19. Simionescu CI, Simionescu BC (1992) The mechanism of plasma-induced polymerization. Makromol Chem Macromol Symp 54(55):595–598

    Article  Google Scholar 

  20. Yan D, Yuan XB, Ma GQ, Sheng J (2009) Low temperature plasma-initiated copolymerization of styrene and maleicanhydride. J Vac Sci Technol B 27:1450–1453

    Article  CAS  Google Scholar 

  21. Osada Y, Mizumoto A (1985) Spontaneous and rapid polymerization of plasma-exposed monomer crystals in the liquid phase. Macromolecules 18:302–304

    Article  CAS  Google Scholar 

  22. Osada Y, Takase M, Iriyama Y (1983) Effects and role of the solvents on the plasma-initiated solution polymerization of vinyl monomers. Polym J 15:81–86

    Article  CAS  Google Scholar 

  23. Saikia PJ, Hazarika AK, Baruah SD (2013) Iron(III)-mediated ATRP systems of n-docosyl acrylate with AIBN and BPO. Polym Bull 70:1483–1498

    Article  CAS  Google Scholar 

  24. Shi SJ, Zhou Y, Lu X, Ye YS, Huang J, Wang XL (2014) Plasma-initiated DT graft polymerization of acrylic acid on surface of porous polypropylene membrane for pore size control. Plasma Chem Plasma Process 34:1257–1269

    Article  CAS  Google Scholar 

  25. Atsushi G, Takeshi F (2004) Kinetics of living radical polymerization. Prog Polym Sci 29:329–385

    Article  CAS  Google Scholar 

  26. Yan XJ, Li JW, Yi LM (2017) Fabrication of pH-responsive hydrophilic/hydrophobic Janus cotton fabric via plasma-induced graft polymerization. Mater Lett 208:46–49

    Article  CAS  Google Scholar 

  27. Ma Q, Zhang H, Zhao J, Gong YK (2012) Fabrication of cell outer membrane mimetic polymer brush on polysulfone surface via RAFT technique. Appl Surf Sci 258:9711–9717

    Article  CAS  Google Scholar 

  28. Han Y, Song SJ, Lua Y, Zhu DF (2016) A method to modify PVDF microfiltration membrane via ATRP with low-temperature plasma pretreatment. Appl Surf Sci 379:474–479

    Article  CAS  Google Scholar 

  29. Keating J IV, Sorci M, Kocsis I, Setaroa A et al (2018) Atmospheric pressure plasma—ARGET ATRP modification of poly(ether sulfone) membranes: a combination attack. J Membr Sci 546:151–157

    Article  CAS  Google Scholar 

  30. Lanzalaco S, Fantin M, Galia A, Isse AA, Gennaro A, Matyjaszewski K (2017) Atom transfer radical polymerization with different halides (F, Cl, Br, and I): is the process “living” in the presence of fluorinated initiators? Macromolecules 50:192–202

    Article  CAS  Google Scholar 

  31. Wahidur Rahaman SM, Matyjaszewski K, Poli R (2016) Cobalt(III) and copper(II) hydrides at the crossroad of catalysed chain transfer and catalysed radical termination: a DFT study. Polym Chem 7:1079–1087

    Article  CAS  Google Scholar 

  32. Qian YJ, Chi LN, Zhou WL, Yu ZJ, Zhang ZZ, Zhang ZJ, Jiang Z (2016) Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment. Appl Surf Sci 360:749–757

    Article  CAS  Google Scholar 

  33. Teng R, Yasuda HK (2002) Ex situ chemical determination of free radicals and peroxides on plasma treated surfaces. Plasma Polym 7:57–69

    Article  CAS  Google Scholar 

  34. Odian G (2004) Principles of polymerization, 4th edn. Wiley-Interscience, New York

    Book  Google Scholar 

  35. Hutchinson RA, Aronson MT, Richards JR (1993) Analysis of pulsed-laser-generated molecular weight distributions for the determination of propagation rate coefficients. Macromolecules 26:6410–6415

    Article  CAS  Google Scholar 

  36. Feng HK, Dan Y (2006) The research of RATRP of styrene in the microemulsion. J Appl Polym Sci 99:1093–1099

    Article  CAS  Google Scholar 

  37. Chiaki Y, Atsushi G, Yoshinobu T, Takeshi F, Kazuya Y, Akio K (2005) Fabrication of high-density polymer brush on polymer substrate by surface-initiated living radical polymerization. Macromolecules 38:4604–4610

    Article  CAS  Google Scholar 

  38. Muhammad E, Shinpei Y, Kohji O, Yoshinobu T, Takeshi F (1998) Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir–Blodgett and atom transfer radical polymerization techniques. Macromolecules 31:5934–5936

    Article  Google Scholar 

  39. Brinkhuis RHG, Schouten AJ (1991) Thin-film behavior of poly(methy1 methacrylates). 2. An FT-IR study of Langmuir–Blodgett films of isotactic PMMA. Macromolecules 24:1496–1504

    Article  CAS  Google Scholar 

  40. Beamson G, Briggs D (1992) High resolution XPS of organic polymers: the Scienta ESCA300 database. Wiley, Chichester

    Google Scholar 

  41. Ma Y, Cao XY, Feng XJ, Ma YM, Zou H (2007) Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90°. Polymer 48:7455–7460

    Article  CAS  Google Scholar 

  42. Cerda J, Vicente M, Gutierrez JM et al (1989) A new methodology for the optimal design and production schedule of multipurpose batch plants. Ind Eng Chem Res 28:988–998

    Article  CAS  Google Scholar 

  43. Wang G, Zhu X, Cheng Z, Zhu J (2006) New ligands for the Fe(III)-mediated reverse atom transfer radical polymerization of methyl methacrylate. J Polym Sci Part A Polym Chem 44:2912–2921

    Article  CAS  Google Scholar 

  44. Worthley CH, Constantopoulos KT, Ginic-Markovic M et al (2011) Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance. J Membr Sci 385:30–39

    Article  CAS  Google Scholar 

  45. Yang MQ, Mao J, Nie W et al (2012) Facile synthesis and responsive behavior of PDMS-b-PEG diblock copolymer brushes via photoinitiated “thiol-ene” click reaction. J Polym Sci Part A Polym Chem 50:2075–2083

    Article  CAS  Google Scholar 

  46. Howarter JA, Youngblood JP (2007) Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv Mater 19:3838–3843

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by National Basic Research Program of China (2009CB623404), National Natural Science Foundation of China (20776068) and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Z., Huang, J., Xia, Y. et al. A Plasma-Initiated Graft Polymerization of Methyl Methacrylate in the Presence of a Reverse ATRP Catalyst. Plasma Chem Plasma Process 39, 293–309 (2019). https://doi.org/10.1007/s11090-018-9928-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-018-9928-9

Keywords

Navigation