Skip to main content
Log in

Study on Glow Discharge in One-Dimensional Transverse Non-uniform Electric Field and Surface Processing of Aramid Fabric

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Using a staggered contact electrode structure, the conditions for and mechanism of uniform discharge in one-dimensional transverse non-uniform electric field and with aramid fiber (AF) as a dielectric barrier material were explored for the first time in this study. An atmospheric pressure glow discharge (APGD) plasma was generated, and the large-area and continuous processing of AF was achieved. Through the electric field simulation as well as scanning electron microscope and X-ray photoelectron spectroscopy tests, it was found that the modification method of pressing the electrode closely to the AF could form the extremely strong electric field region of magnitude 1.444 × 107 V/m under the premise of uniform discharge. The highly active plasma generated could not only effectively increase the surface roughness of the treated material, but also introduce nitrogen functional groups which can’t be introduced through traditional air plasma. As found through the contact angle measurement, the contact angle was greatly decreased (by 52.3%) after being treated with 12.05 W/cm3 of plasma for 10 s, indicating that APGD plasma can achieve a good modification effect and high modification efficiency at low discharge power density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li S, Han K, Rong H et al (2014) Surface modification of aramid fibers via ammonia-plasma treatment. J Appl Polym Sci 131:245–253

    Google Scholar 

  2. Chu Y, Chen X, Sheel DW et al (2014) Surface modification of aramid fibers by atmospheric pressure plasma-enhanced vapor deposition. Text Res J 84:1288–1297

    Article  CAS  Google Scholar 

  3. Lange PJD, Mader E, Mai K et al (2001) Characterization and micromechanical testing of the interphase of aramid-reinforced epoxy composites. Compos A Appl Sci Manuf 32:331–342

    Article  Google Scholar 

  4. Wang CX, Du M, Lv JC et al (2015) Surface modification of aramid fiber by plasma induced vapor phase graft polymerization of acrylic acid. I. Influence of plasma conditions. Appl Surf Sci 349:333–342

    Article  CAS  Google Scholar 

  5. Geyter ND, Morent R, Leys C et al (2006) Surface modification of a polyester non-woven with a dielectric barrier discharge in air at medium pressure. Surf Coat Technol 201:2460–2466

    Article  Google Scholar 

  6. Fang K, Zhang C (2009) Surface physical–morphological and chemical changes leading to performance enhancement of atmospheric pressure plasma treated polyester fabric for inkjet printing. Appl Surf Sci 255:7561–7567

    Article  CAS  Google Scholar 

  7. Yuen CWM, Jiang SQ, Kan CW et al (2007) Effect of low temperature plasma treatment on the electroless nickel plating of polyester fabric. J Appl Polym Sci 105:2046–2053

    Article  CAS  Google Scholar 

  8. Sun J, Yao L, Sun S et al (2011) ESR study of atmospheric pressure plasma jet irradiated aramid fibers. Surf Coat Technol 205:5312–5317

    Article  CAS  Google Scholar 

  9. Baltazar-Y-Jimenez A, Bistritz M, Schulz E et al (2008) Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol 68:215–227

    Article  CAS  Google Scholar 

  10. Cheng SY, Yuen CWM, Kan CW et al (2010) Influence of atmospheric pressure plasma treatment on various fibrous materials: performance properties and surface adhesion analysis. Vacuum 84:1466–1470

    Article  CAS  Google Scholar 

  11. Jia C, Chen P, Wang Q et al (2011) Surface wettability of atmospheric dielectric barrier discharge processed Armos fibers. Appl Surf Sci 258:388–393

    Article  CAS  Google Scholar 

  12. Zhang X, Chen P, Yu Q et al (2013) Effects of plasma-induced epoxy coatings on surface properties of Twaron fibers and improved adhesion with PPESK resins. Vacuum 97:1–8

    Article  CAS  Google Scholar 

  13. Kurniawan D, Kim BS, Lee HY et al (2012) Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites. Compos B Eng 43:1010–1014

    Article  CAS  Google Scholar 

  14. Li X, Dong L, Zhao N et al (2007) A simple device of generating glow discharge plasma in atmospheric pressure argon. Appl Phys Lett 91:161507-1–161507-3

    Google Scholar 

  15. Wang K, Wang W, Yang D et al (2010) Surface modification of polypropylene non-woven fabric using atmospheric nitrogen dielectric barrier discharge plasma. Appl Surf Sci 256:6859–6864

    Article  CAS  Google Scholar 

  16. Sun G, Liu W, Li C, Zhang R (2013) The generation characteristics of dielectric barrier glow discharge plasma in air. J Phys Conf Ser 441:303–311

    Article  Google Scholar 

  17. Liu W, Chen X, Lei X et al (2017) Surface processing of polyester canvas using atmospheric pressure air glow discharge plasma. Plasma Chem Plasma Process 37:465–474

    Article  CAS  Google Scholar 

  18. Okazaki S, Kogoma M, Uehara M et al (1993) Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source. J Phys D Appl Phys 26:889–892

    Article  CAS  Google Scholar 

  19. Kriegseis J, Möller B, Grundmann S et al (2011) Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J Electrostat 69:302–312

    Article  Google Scholar 

  20. Ren Y, Wang C, Qiu Y et al (2007) Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Appl Surf Sci 253:9283–9289

    Article  CAS  Google Scholar 

  21. Liu W, Ma C, Yang X et al (2016) A study of the glow discharge plasma jet of the novel Hamburger-electrode. Phys Plasmas 23:2994

    Google Scholar 

  22. Wang X, Li C, Lu M et al (2003) Study on an atmospheric pressure glow discharge. Plasma Sources Sci Technol 12:358–361

    Article  Google Scholar 

  23. Holub M (2012) On the measurement of plasma power in atmospheric pressure DBD plasma reactors. Int J Appl Electromagn 39:81–87

    Google Scholar 

  24. Moravej M, Yang X, Nowling GR et al (2004) Physics of high-pressure helium and argon radio-frequency plasmas. J Appl Phys 96:7011–7017

    Article  CAS  Google Scholar 

  25. Gu R, Yu J, Hu C et al (2012) Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure. Appl Surf Sci 258:10168–10174

    Article  CAS  Google Scholar 

  26. Jia C, Chen P, Wang Q et al (2012) Wetting and adhesion behavior of Armos fibers after dielectric barrier discharge plasma treatment. J Appl Polym Sci 125:433–438

    Article  CAS  Google Scholar 

  27. Karim Biswas MA, Shayed MA, Hund RD, Cherif C et al (2013) Surface modification of Twaron aramid fiber by the atmospheric air plasma technique. Text Res J 83:406–417

    Article  Google Scholar 

  28. Jia C, Chen P, Li B et al (2010) Effects of Twaron fiber surface treatment by air dielectric barrier discharge plasma on the interfacial adhesion in fiber reinforced composites. Surf Coat Technol 204:3668–3675

    Article  CAS  Google Scholar 

  29. Xi M, Li YL, Shang SY et al (2008) Surface modification of aramid fiber by air DBD plasma at atmospheric pressure with continuous on-line processing. Surf Coat Technol 202:6029–6033

    Article  CAS  Google Scholar 

  30. Jia C, Chen P, Wang Q et al (2014) The effect of atmospheric-pressure air plasma discharge power on adhesive properties of aramid fibers. Polym Compos 37:620–626

    Article  Google Scholar 

  31. Jia C, Ping C, Wei L et al (2011) Surface treatment of aramid fiber by air dielectric barrier discharge plasma at atmospheric pressure. Appl Surf Sci 257:4165–4170

    Article  CAS  Google Scholar 

  32. Wang Q, Chen P, Jia C et al (2011) Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber. Appl Surf Sci 258:513–520

    Article  CAS  Google Scholar 

  33. Hwang YJ, Qiu Y, Zhang C et al (2003) Effects of atmospheric pressure helium/air plasma treatment on adhesion and mechanical properties of aramid fibers. J Adhes Sci Technol 17:847–860

    Article  CAS  Google Scholar 

  34. Wang Q, Kaliaguine S, Ait-Kadi A et al (2003) Catalytic grafting: a new technique for polymer-fiber composites. Polyethylene-plasma-treated Kevlar TM fibers composites: analysis of the fiber surface. J Appl Polym Sci 48:121–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenzheng Liu or Yiqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, X., Wang, T. et al. Study on Glow Discharge in One-Dimensional Transverse Non-uniform Electric Field and Surface Processing of Aramid Fabric. Plasma Chem Plasma Process 37, 1607–1620 (2017). https://doi.org/10.1007/s11090-017-9851-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9851-5

Keywords

Navigation