Skip to main content
Log in

Research on the Effect of Dielectric Barrier Discharge (DBD) Plasma Remote Treatment on Drag Force of Polyethylene Terephthalate (PET) Yarns in Air Flow with Different Humidities

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, long-lived free radicals in atmospheric-pressure DBD plasma were used to treat PET yarn surface. Subsequently, the drag force of treated yarns in air flow at four humidities (40 ± 3, 50 ± 3, 60 ± 3, 70 ± 3%) was measured. The results suggest that with the increase of flow humidity, the air drag force of untreated yarn decreased while that of plasma-treated ones on average increased gradually. The average growth rates of the drag force under each humidity were 5.33, 7.58, 10.08 and 12.28% respectively. Meanwhile, the air drag force of the yarns treated at different specific input energy (SIE) densities and treatment time varied obviously under different flow humidity. The X-ray photoelectron spectroscopy analysis was performed to characterize the yarn surfaces chemically. The topology and roughness of PET yarns were measured by atomic force microscopy. The tensile test was carried out to characterize the mechanical strength. The ozone, nitrate and nitrite radicals and total organic carbon in tail gas of plasma were also analyzed. The maximal atomic concentration of N element on PET surface could reach 8.0%. The obtained results can improve the understanding of the property of long-lived reactive species from DBD plasma source generated at different SIE and the difference in PET surface etching and modification during remote treatment at different SIE. Moreover, the results also provide an experimental guideline for the improvement of weaving efficiency in air-jet weaving.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Borcia G, Anderson CA, Brown NMD (2006) Surf Coat Technol 201:3074–3081

    Article  CAS  Google Scholar 

  2. Morent R, De Geyter N, Verschuren J, De Clerck K, Kiekens P, Leys C (2008) Surf Coat Technol 202:3427–3449

    Article  CAS  Google Scholar 

  3. Kamlangkla K, Hodak SK, Levalois-Grützmacher J (2011) Surf Coat Technol 205:3755–3762

    Article  CAS  Google Scholar 

  4. Tsafack MJ, Levalois-Grützmacher J (2006) Surf Coat Technol 200:3503–3510

    Article  CAS  Google Scholar 

  5. Tsafack MJ, Levalois-Grützmacher J (2007) Surf Coat Technol 201:5789–5795

    Article  CAS  Google Scholar 

  6. Relvas C, Castro G, Rana S, Fangueiro R (2015) Plasma Chem Plasma Process 35:863–878

    Article  CAS  Google Scholar 

  7. Yang L, Chen J, Guo Y, Zhang Z (2009) Appl Surf Sci 255:4446–4451

    Article  CAS  Google Scholar 

  8. Bartis EAJ, Knoll AJ, Luan P, Seog J, Oehrlein GS (2016) Plasma Chem Plasma Process 36:121–149

    Article  CAS  Google Scholar 

  9. Ormerod A, Sondhelm WS (1995) Weaving technology and operation. The Textile Institute, Manchester

    Google Scholar 

  10. Mohamed MH, Salama M (1986) Text Res J 56(11):683–690

    Article  Google Scholar 

  11. Mohamed MH, Salama M (1986) Text Res J 56(12):721–726

    Article  Google Scholar 

  12. Ishida M, Okajima A (1991) J Text Mach Soc Jap 44(4):43–54

    Article  Google Scholar 

  13. Ishida M, Okajima A (1994) Text Res J 64(1):10–20

    Article  Google Scholar 

  14. Jeong SY, Kim KH, Choi JH, Lee CK (2005) Int J Precis Engng Manuf 6(1):23–30

    Google Scholar 

  15. Adamek K (1999) Comput Assisted Mech Eng Sci 6(4):251–261

    Google Scholar 

  16. Kim SD, Song DJ (2001) Text Res J 71(9):783–790

    Article  Google Scholar 

  17. Belforte G, Mattiazzo G, Viktorov V, Visconte C (2009) Text Res J 79(18):1664–1669

    Article  CAS  Google Scholar 

  18. Vangheluwe L (1997) Text Res J 67(11):809–815

    Article  CAS  Google Scholar 

  19. Liu S, Feng Z, Liu D, Zhang X, Zhang L (2015) Text Res J 86(20):2140–2150

    Article  Google Scholar 

  20. Chen X, Bian W, Song X, Liu D, Zhang J (2013) Sep Purif Technol 120:102–109

    Article  CAS  Google Scholar 

  21. Bader H, Hoigné J (1981) Water Res 15:449–456

    Article  CAS  Google Scholar 

  22. State Environmental Protection Administration of China, Standard Analytical Methods for Air and Exhausted Gas Monitor (Chinese) (2003) Environmental Science Press, China

  23. Bian W, Song X, Liu D, Zhang J, Chen X (2013) Chem Eng J 219:385–394

    Article  CAS  Google Scholar 

  24. Zeng M, Zhao K, Lu Y, Ouyang Y, Liu D, Wang M, Ma Y (2015) Plasma Chem Plasma Process 35:721–738

    Article  CAS  Google Scholar 

  25. Cao L, Xie X, Zeng J, Huang H (2013) Appl Mech Mater 345(345):48–53

    Google Scholar 

  26. Bartis EAJ, Luan P, Knoll AJ, Hart C, Seog J, Oehrlein GS (2015) Biointerphases 10:029512–029520

    Article  Google Scholar 

  27. Pavlovich MJ, Clark DS, Graves DB (2014) Plasma Sour Sci Technol 23:065036–065043

    Article  CAS  Google Scholar 

  28. Waring MS, Wells JR (2015) Atmos Environ 106:382–391

    Article  CAS  Google Scholar 

  29. Kostov KG, Nishime TMC, Hein LRO, Toth A (2013) Surf Coat Tech 234:60–66

    Article  CAS  Google Scholar 

  30. O’Hare LA, Leadley S, Parbhoo B (2002) Surf Interface Anal 33:335–342

    Article  Google Scholar 

  31. Sellin N, Campos JSC (2003) Mater Res. 6:163–166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this work by the projects funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National High Tech Research and Development Program of China (‘863’ Program, No. SQ2009AA06XK1482331), ‘Jin Shan Ying Cai’ and ‘Chang Shan Ren Cai’ Programs (Zhenjiang, Jiangsu, China) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihua Feng or Deqi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, M., Ma, Y. et al. Research on the Effect of Dielectric Barrier Discharge (DBD) Plasma Remote Treatment on Drag Force of Polyethylene Terephthalate (PET) Yarns in Air Flow with Different Humidities. Plasma Chem Plasma Process 37, 1573–1586 (2017). https://doi.org/10.1007/s11090-017-9838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9838-2

Keywords

Navigation