Skip to main content

Advertisement

Log in

Experimental Comparison of Methane Pyrolysis in Thermal Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Methane pyrolysis via thermal plasma was investigated experimentally on a 2 kW DC arc plasma setup in argon atmosphere. Two widely applied methane pyrolysis profiles, i.e., pre-mixing methane and argon before fed into plasma torch, and injecting methane into pure argon plasma jet at torch outlet, were compared. Performances of methane pyrolysis regarding to methane conversion, acetylene selectivity, acetylene specific energy requirement (SER), and plasma stability were concluded. Results showed that pre-mixing methane and argon before fed into plasma torch would be efficient in converting methane and acetylene production, with higher conversion of methane and lower SER to acetylene at a given specific energy. Also, methane in arc zone would cause periodic fluctuations of plasma voltage and power, which could be reduced by controlling methane fraction in feed. On the other hand, when methane was injected into argon plasma jet at torch outlet, the energy efficiency in converting methane and producing acetylene would be lower. And the plasma would barely participate in the reaction other than providing heat, but the erosion of electrode was much slower and slighter. It was also validated that the SER of acetylene was limited by the thermal loss of the setup due to size-effect of reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schobert H (2014) Production of acetylene and acetylene-based chemicals from coal. Chem Rev 114:1743–1760

    Article  CAS  Google Scholar 

  2. Cheng Y, Li TY, Jin Y, Cheng Y (2016) State-of-the-art development of research and applications of chemical conversion processes at ultra-high temperature in thermal plasma reactors. Chem Ind Eng Prog 35(6):1676–1686

    Google Scholar 

  3. Zhang AM (2012) Chemical utilization and development trend of natural gas. Nat Gas Chem Ind 37(3):69–72

    Article  Google Scholar 

  4. Fincke JR, Anderson RP, Hyde T, Detering BA, Wright R, Bewley RL, Haggard DC, Swank WD (2002) Plasma thermal conversion of methane to acetylene. Plasma Chem Plasma Process 22(1):105–135

    Article  CAS  Google Scholar 

  5. Bao WR, Tian YL, Li F, Lv YK, Xie KC (2008) Methane pyrolysis to acetylene under arc plasma. J Chem Ind Eng 2(59):472–477

    Google Scholar 

  6. Su BG, Fang JW, Wen GD, Ma J, Xing HB, Ren QL (2013) Development and process of pyrolysis of light alkanes to acetylene by thermal plasma. Chem React Eng Technol 29(3):230–237

    CAS  Google Scholar 

  7. Tian YL (2007) The study of methane pyrolysis to acetylene in arc plasma. Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Tai Yuan

    Google Scholar 

  8. Heinz G (1962) How Hüels makes acetylene by DC arc. Hydrocarb Process Pet Refin 41:159–164

    Google Scholar 

  9. Haworth JW, Grant WJ (1961) Acetylene form hydrocarbons. In: Steiner H (ed) Introduction to petroleum chemicals. Pergamon Press, Oxford

    Google Scholar 

  10. Leutner HW, Stokes CS (1961) Producing acetylene in a plasma arc. Ind Eng Chem 53(5):341–342

    Article  CAS  Google Scholar 

  11. Anderson JE, Case LK (1962) Pyrolysis of methane in DC arc plasma. Ind Eng Chem Process Des Dev 54(1):161–167

    Article  Google Scholar 

  12. Holmes JM (1969) Evaluation of DuPont arc process for acetylene and vinyl chloride monomer production. ORNL-TM-2725

  13. Gehrmann K, Schmidt H (1971) Pyrolysis of hydrocarbons using a hydrogen plasma. In: 8th world petroleum congress, Moscow, USSR

  14. Vursel F, Polak L (1971) Plasma chemical processing. In: Venugopalan M (ed) Reactions under plasma conditions. Wiley, New York

    Google Scholar 

  15. Plotczyk WW (1983) Effect of quenching temperature of the reaction on the synthesis of acetylene in hydrogen plasma jet. In: Proceedings of the sixth international symposium on plasma chemistry, pp 300–305

  16. Plotczyk WW (1985) Thermodynamic models of acetylene synthesis in an argon plasma jet. In: Proceedings of the seventh international symposium on plasma chemistry, pp 280–285

  17. Show D (1994) Kvarner to make carbon black. Eur Rubber J 9(176):30–31

    Google Scholar 

  18. Zhang XF, Zeng DQ (1998) The plasma method for acetylene production from natural gas. Nat Gas Chem Ind 23(4):39–43

    Google Scholar 

  19. Tao XM, Dai W, Chen Q, Yin YX, Dai XY (2006) Laboratory test for conversion of natural gas to acetylene plasma jet. Nat Gas Ind 26(4):131–134

    Google Scholar 

  20. Yao SL, Suzuki E, Nakayama A (2001) The pyrolysis property of a pulsed plasma of methane. Plasma Chem Plasma Process 21(4):651–663

    Article  CAS  Google Scholar 

  21. Yao SL, Nakayama A, Suzuki E (2001) Methane conversion using a high-frequency pulsed plasma: important factors. AIChE J 47(2):413–418

    Article  CAS  Google Scholar 

  22. Lee DH, Song YH, Kim KT, Lee JO (2013) Comparative study of methane activation process by different plasma sources. Plasma Chem Plasma Process 33:647–661

    Article  CAS  Google Scholar 

  23. Gonzalez RS, Kim Y, Rosocha LA, Abbate S (2007) Methane and ethane decomposition in an atmospheric pressure plasma jet. IEEE Trans Plasma Sci 35(6):1669–1676

    Article  Google Scholar 

  24. Qiu JS, Wang XQ, Wang Q, Ma TC (1998) Pyrolysis of hydrocarbons in nitrogen plasma. J Fuel Chem Technol 26(6):481–485

    CAS  Google Scholar 

  25. Abanades S, Tescari S, Rodat S, Flamant G (2009) Natural gas pyrolysis in double walled reactor tubes using thermal plasma or concentrated solar radiation as external heating source. J Nat Gas Chem 18(1):1–8

    Article  CAS  Google Scholar 

  26. Kovács T, Deam RT (2006) Methane reformation using plasma: an initial study. J Phys D Appl Phys 39:2391–2400

    Article  Google Scholar 

  27. Kado S, Urasaki K, Sekine Y, Fujimoto K, Nozaki T, Okazaki K (2003) Reaction mechanism of CH4 activation using non-equilibrium pulsed discharge at room temperature. Fuel 2:2291–2297

    Article  Google Scholar 

  28. Oumghar A, Legrand J, Diamy AM (1994) A kinetic study of methane conversion by a dinitrogen microwave plasma. Plasma Chem Plasma Process 3(14):229–249

    Article  Google Scholar 

  29. Baranov IE, Demkin SA, Zhivotov VK, Nikolaev II, Rusanov VD, Fedotov NG (2005) Methane pyrolysis stimulated by admixture of atomic hydrogen: 2. Mechanism analysis and kinetics calculation. High Energy Chem 39(4):268–272

    Article  CAS  Google Scholar 

  30. Luo YW, Qi JH, Yin YX, Dai XY (2003) Kinetic and thermodynamic analysis of the thermal plasma decomposition system of methane. J Sichuan Univ Eng Sci Ed 35(4):33–37

    CAS  Google Scholar 

  31. Liao MR, Wang Y, Wu HF, Li H, Xia WD (2015) Study of non-thermal DC arc plasma of CH4/Ar at atmospheric pressure using optical emission spectroscopy and mass spectrometry. Plasma Sci Technol 17(9):743–748

    Article  CAS  Google Scholar 

  32. Pristavita R, Mendoza-Gonzalez NY, Meunier JL, Berk D (2010) Carbon blacks produced by thermal plasma: the influence of the reactor geometry on the product morphology. Plasma Chem Plasma Process 30(2):267–279

    Article  CAS  Google Scholar 

  33. Pristavita R, Meunier JL, Berk D (2011) Carbon nano-flakes produced by an inductively coupled thermal plasma system for catalyst applications. Plasma Chem Plasma Process 31(2):393–403

    Article  CAS  Google Scholar 

  34. Zhang HB, Cao TF, Cheng Y (2015) Preparation of few-layer graphene nanosheets by radio-frequency induction thermal plasma. Carbon 86:38–45

    Article  CAS  Google Scholar 

  35. Moshrefi MM, Rashidi F, Bozorgzadeh HR, Zekordi SM (2012) Methane conversion to hydrogen and carbon black by DC spark discharge. Plasma Chem Plasma Process 32:1157–1168

    Article  CAS  Google Scholar 

  36. Baldissarelli VZ, de Benetoli LO, Cassini FA, de Souza IG, Debacher NA (2014) Plasma assisted production of carbon black and carbon nanotubes from methane by thermal plasma reform. J Braz Chem Sci 25(1):126–132

    CAS  Google Scholar 

  37. Gordon CL, Lobban LL, Mallinson RG (2003) Ethylene production using a Pd and Ag–Pd–Y-zeolite catalyst in a DC plasma reactor. Catal Today 84:51–57

    Article  CAS  Google Scholar 

  38. Wang KJ, Li XS, Wang H, Shi C, Xu Y, Zhu AM (2008) Oxygen-free conversion of methane to ethylene in a plasma-followed-by-catalyst (PFC) reactor. Plasma Sci Technol 10(5):600–604

    Article  CAS  Google Scholar 

  39. Ravasio S, Cavallotti C (2012) Analysis of reactivity and energy efficiency of methane conversion through non thermal plasmas. Chem Eng Sci 84:580–590

    Article  CAS  Google Scholar 

  40. Rueangjitt N, Sreethawong T, Chavadej S, Sekiguchi H (2009) Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: effects of input power, reactor thickness, and catalyst existence. Chem Eng J 155:874–880

    Article  CAS  Google Scholar 

  41. Cho W, Baek Y, Park D, Kim YC, Anpo M (1998) The conversion of natural gas to higher hydrocarbons using a microwave plasma and catalysts. Res Chem Intermed 24(1):55–66

    Article  CAS  Google Scholar 

  42. Młotek M, Sentek J, Krawczyk K, Szałowski KS (2009) The hybrid plasma-catalytic process for non-oxidative methane coupling to ethylene and ethane. Appl Catal A 366:232–241

    Article  Google Scholar 

  43. Yan BH, Xu PC, Jin Y, Cheng Y (2012) Understanding coal/hydrocarbons pyrolysis in thermal plasma reactors by thermodynamic analysis. Chem Eng Sci 84:31–39

    Article  CAS  Google Scholar 

  44. Cheng Y, Yan BH, Li TY, Cheng Y, Li X, Guo CY (2015) Experimental study on coal tar pyrolysis in thermal plasma. Plasma Chem Plasma Process 35:401–413

    Article  CAS  Google Scholar 

  45. Yan BH, Xu PC, Guo CY, Jin Y, Cheng Y (2012) Experimental study on coal pyrolysis to acetylene in thermal plasma reactors. Chem Eng J 207:109–116

    Article  Google Scholar 

  46. Wu CN, Chen JQ, Cheng Y (2010) Thermodynamic analysis of coal pyrolysis to acetylene in hydrogen plasma reactor. Fuel Process Technol 91:823–830

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Basic Research Program of China (973 Program No. 2012CB720301) and PetroChina are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Rehmet, C., Cheng, Y. et al. Experimental Comparison of Methane Pyrolysis in Thermal Plasma. Plasma Chem Plasma Process 37, 1033–1049 (2017). https://doi.org/10.1007/s11090-017-9806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9806-x

Keywords

Navigation