Skip to main content
Log in

Prediction of Dielectric Properties of Air Plasma for Circuit Breaker Application Based on a Chemically Non-equilibrium Model

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Dielectric properties of air plasma in a model circuit break were investigated. A chemically non-equilibrium (non-CE) model was used to simulate the arc dynamic behavior inside the nozzle during current zero period. Distribution of the critical breakdown electric field Ecr of hot air was derived from the electron energy distribution function by solving the Boltzmann transport equation, using calculated temperature, pressure and species composition. Then, the electric field at applied recovery voltage (Ea) was calculated. The probability of dielectric breakdown inside the nozzle can be predicted by comparing Ea and Ecr. The results show that neglect of departure from chemical equilibrium may lead to the overestimation of the dielectric recovery strength of circuit breaker arc during the first several hundred microseconds after current zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Tanaka Y (2004) Prediction of dielectric properties of N2/O2 mixtures in the temperature range of 300–3500 K. J Phys D Appl Phys 37(6):851

    Article  CAS  Google Scholar 

  2. Yan J, Fang M, Liu Q (1997) Dielectric breakdown of a residual SF 6 plasma at 3000 K under diatomic equilibrium. IEEE Trans Dielectr Electr Insul 4(1):114–119

    Article  CAS  Google Scholar 

  3. Wang W, Murphy AB, Rong M, Looe HM, Spencer JW (2013) Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications. J Appl Phys 114(10):103301

    Article  Google Scholar 

  4. Wang W, Tu X, Mei D, Rong M (2013) Dielectric breakdown properties of hot SF6/He mixtures predicted from basic data. Phys Plasmas (1994-Present) 20(11):113503

    Article  Google Scholar 

  5. Rothardt L, Mastovsky J, Jahn G, Blaha J (1981) Breakdown experiments in air and nitrogen above 1500 K. J Phys D Appl Phys 14(4):715

    Article  Google Scholar 

  6. Matsumura T, Yokomizu Y, Almiron PC, Yamamoto K, Ohta D, Shibuya M (2005) Breakdown voltage of CO2 at temperatures around 4000 K and in range from 300 to 700 K. Tran Inst Electr Eng Jpn B 125(11):1063–1069

    Google Scholar 

  7. Belevtsev A, Firsov K, Kazantsev SY, Kononov I (2007) On the temperature dependence of the critical reduced electric field in SF6 and mixtures of SF6 with C2H6. J Phys D Appl Phys 40(5):1368

    Article  CAS  Google Scholar 

  8. Zhang Q, Yan J, Fang M (2013) Current zero behaviour of an SF6 nozzle arc under shock conditions. J Phys D Appl Phys 46(16):165203

    Article  Google Scholar 

  9. Seeger M, Naidis G, Steffens A, Nordborg H, Claessens M (2005) Investigation of the dielectric recovery in synthetic air in a high voltage circuit breaker. J Phys D Appl Phys 38(11):1795

    Article  CAS  Google Scholar 

  10. Yousfi M, Robin-Jouan P, Kanzari Z (2005) Breakdown electric field calculations of hot SF 6 for high voltage circuit breaker applications. IEEE Trans Dielectr Electr Insul 12(6):1192–1200

    Article  CAS  Google Scholar 

  11. Bini R, Mahdizadeh N, Seeger M, Votteler T (2008) Measurements and simulation of the dielectric recovery in a SF 6 circuit breaker. In: GD 2008. 17th international conference on gas discharges and their applications. IEEE, pp 113–116

  12. Jiang X, Li X, Zhao H, Jia S, Yan JD, Zhu K (2013) Analysis of the dielectric breakdown characteristics for a 252-kV gas circuit breaker. IEEE Trans Power Deliv 28(3):1592–1599

    Article  Google Scholar 

  13. Rat V, Murphy A, Aubreton J, Elchinger M-F, Fauchais P (2008) Treatment of non-equilibrium phenomena in thermal plasma flows. J Phys D Appl Phys 41(18):183001

    Article  Google Scholar 

  14. Tanaka Y (2004) Two-temperature chemically non-equilibrium modelling of high-power Ar–N2 inductively coupled plasmas at atmospheric pressure. J Phys D Appl Phys 37(8):1190

    Article  CAS  Google Scholar 

  15. Sun H, Tanaka Y, Tomita K, Wu Y, Rong M, Uesugi Y, Ishijima T (2015) Computational non-chemically equilibrium model on the current zero simulation in a model N2 circuit breaker under the free recovery condition. J Phys D Appl Phys 49(5):055204

    Article  Google Scholar 

  16. Wang W, Yan JD, Rong M, Murphy AB, Spencer JW (2013) Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model. J Phys D Appl Phys 46(6):065203

    Article  Google Scholar 

  17. Gao Q, Yang A, Wang X, Murphy AB, Li Y, Zhang C, Lu Y, Huan L, Zhu Z, Rong M (2016) Determination of the dominant species and reactions in non-equilibrium CO2 thermal plasmas with a two-temperature chemical kinetic model. Plasma Chem Plasma Process 36:1–23

    Article  Google Scholar 

  18. Seeger M (2015) Perspectives on research on high voltage gas circuit breakers. Plasma Chem Plasma Process 35(3):527–541

    Article  CAS  Google Scholar 

  19. Chunlin W, Yi W, Zhexin C, Fei Y, Ying F, Mingzhe R, Hantian Z (2016) Thermodynamic and transport properties of real air plasma in wide range of temperature and pressure. Plasma Sci Technol 18(7):732

    Article  Google Scholar 

  20. Wang W, Rong M, Wu Y, Spencer JW, Yan JD, Mei D (2012) Thermodynamic and transport properties of two-temperature SF6 plasmas. Phys Plasmas (1994-Present) 19(8):083506

    Article  Google Scholar 

  21. Yos JM (1963) Transport properties of nitrogen, hydrogen, oxygen, and air to 30,000 K. DTIC document

  22. Capitelli M, Gorse C, Longo S, Giordano D (2000) Collision integrals of high-temperature air species. J Thermophys Heat Transf 14(2):259–268

    Article  CAS  Google Scholar 

  23. Tanaka Y, Michishita T, Uesugi Y (2005) Hydrodynamic chemical non-equilibrium model of a pulsed arc discharge in dry air at atmospheric pressure. Plasma Sources Sci Technol 14(1):134

    Article  CAS  Google Scholar 

  24. Park C (1990) Nonequilibrium hypersonic aerothermodynamics. Cité pp. ix et 15

  25. Dunn MG, Lordi JA (1970) Measurement of N2/plus/plus e/-/dissociative recombination in expanding nitrogen flows. AIAA J 8(2):339–345

    Article  CAS  Google Scholar 

  26. Ionin A, Kochetov I, Napartovich A, Yuryshev N (2007) Physics and engineering of singlet delta oxygen production in low-temperature plasma. J Phys D Appl Phys 40(2):R25

    Article  CAS  Google Scholar 

  27. Morgan W (2003) a humid air chemistry Kinema research & Software

  28. Pancheshnyi S, Nudnova M, Starikovskii A (2005) Development of a cathode-directed streamer discharge in air at different pressures: experiment and comparison with direct numerical simulation. Phys Rev E 71(1):016407

    Article  CAS  Google Scholar 

  29. Aleksandrov N, Bazelyan E, Kochetov I, Dyatko N (1997) The ionization kinetics and electric field in the leader channel in long air gaps. J Phys D Appl Phys 30(11):1616

    Article  CAS  Google Scholar 

  30. Wang X, Gao Q, Fu Y, Yang A, Rong M, Wu Y, Niu C, Murphy AB (2016) Dominant particles and reactions in a two-temperature chemical kinetic model of a decaying SF6 arc. J Phys D Appl Phys 49(10):105502

    Article  Google Scholar 

  31. Wang W, Berthelot A, Kolev S, Tu X, Bogaerts A (2016) CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model. Plasma Sources Sci Technol 25(6):065012

    Article  Google Scholar 

  32. Hagelaar G, Pitchford L (2005) Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Sci Technol 14(4):722

    Article  CAS  Google Scholar 

  33. Pancheshnyi S, Biagi S, Bordage M, Hagelaar G, Morgan W, Phelps A, Pitchford L (2012) The LXCat project: electron scattering cross sections and swarm parameters for low temperature plasma modeling. Chem Phys 398:148–153

    Article  CAS  Google Scholar 

  34. Folkard M, Haydon S (1973) Experimental investigations of ionization growth in nitrogen. I. J Phys B: At Mol Phys 6(1):214

    Article  CAS  Google Scholar 

  35. Daniel T, Harris F (1970) The spatial growth of ionization currents in nitrogen at voltages up to 500 kV. J Phys B: At Mol Phys 3(3):363

    Article  CAS  Google Scholar 

  36. Price D, Lucas J, Moruzzi J (1972) Ionization in oxygen–hydrogen mixtures. J Phys D Appl Phys 5(7):1249

    Article  CAS  Google Scholar 

  37. Price D, Moruzzi J (1973) Ionization in mixtures of oxygen and carbon monoxide. J Phys D Appl Phys 6(2):L17

    Article  CAS  Google Scholar 

  38. Lawton S, Phelps A (1978) Excitation of the b 1Σ + g state of O2 by low energy electrons. J Chem Phys 69(3):1055–1068

    Article  CAS  Google Scholar 

  39. Corbin R, Frommhold L (1974) Electron avalanches in oxygen and in mixtures of O2 and H2: determination of the first Townsend coefficient α. Phys Rev A 10(6):2273

    Article  CAS  Google Scholar 

  40. Price D, Lucas J, Moruzzi J (1973) Current growth in oxygen. J Phys D Appl Phys 6(12):1514

    Article  CAS  Google Scholar 

  41. Lucas J, Price D, Moruzzi J (1973) The calculation of electron energy distributions and attachment coefficient for electron swarms in oxygen. J Phys D Appl Phys 6(12):1503

    Article  CAS  Google Scholar 

  42. Lakshminarasimha C, Lucas J (1977) The ratio of radial diffusion coefficient to mobility for electrons in helium, argon, air, methane and nitric oxide. J Phys D Appl Phys 10(3):313

    Article  CAS  Google Scholar 

  43. Rao CR, Raju GG (1971) Growth of ionization currents in dry air at high values of E/N. J Phys D Appl Phys 4(4):494

    Article  CAS  Google Scholar 

  44. Moruzzi J, Price D (1974) Ionization, attachment and detachment in air and air-CO2 mixtures. J Phys D Appl Phys 7(10):1434

    Article  CAS  Google Scholar 

  45. Maller V, Naidu M (1976) Ratio of diffusion-coefficient to mobility (D-MU) for electrons in nitrogen and air. Indian J Pure Appl Phys 14(9):733–737

    CAS  Google Scholar 

  46. Ryżko H, Åström E (1967) Electron attachment-detachment processes in dry air. J Appl Phys 38(1):328–330

    Article  Google Scholar 

  47. Harrison MA, Geballe R (1953) Simultaneous measurement of ionization and attachment coefficients. Phys Rev 91(1):1

    Article  CAS  Google Scholar 

  48. Gallagher J, Beaty E, Dutton J, Pitchford L (1983) An annotated compilation and appraisal of electron swarm data in electronegative gases. J Phys Chem Ref Data 12(1):109–152

    Article  CAS  Google Scholar 

  49. Parkes D, Sugden T (1972) Electron attachment and detachment in nitric oxide. J Chem Soc Farad Trans 2: Mol Chem Phys 68:600–614

    Article  CAS  Google Scholar 

  50. Hayashi M (1990) Electron collision cross-sections determined from beam and swarm data by Boltzmann analysis. In: Capitelli M, Bardsley JN (eds) Nonequilibrium processes in partially ionized gases. Springer, New York, pp 333–340

    Chapter  Google Scholar 

  51. Gonzalez J, Girard R, Gleizes A (2000) Decay and post-arc phases of a SF6 arc plasma: a thermal and chemical non-equilibrium model. J Phys D Appl Phys 33(21):2759

    Article  CAS  Google Scholar 

  52. Wang W, Bogaerts A (2016) Effective ionisation coefficients and critical breakdown electric field of CO2 at elevated temperature: effect of excited states and ion kinetics. Plasma Sources Sci Technol 25(5):055025

    Article  Google Scholar 

  53. Robin-Jouan P, Yousfi M (2007) New breakdown electric field calculation for SF6 high voltage circuit breaker applications. Plasma Sci Technol 9(6):690

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) 2015CB251002, the Science Fund for Creative Research Groups of the National Natural Science Foundation of China 51521065, the National Natural Science Foundation of China 51577145, the Fundamental Research Funds for the Central Universities, and Shaanxi Province Natural Science Foundation 2013JM-7010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, H., Luo, B. et al. Prediction of Dielectric Properties of Air Plasma for Circuit Breaker Application Based on a Chemically Non-equilibrium Model. Plasma Chem Plasma Process 37, 1051–1068 (2017). https://doi.org/10.1007/s11090-017-9796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9796-8

Keywords

Navigation