Skip to main content
Log in

Plasma Impedance Analysis: A Novel Approach for Investigating a Phase Transition from a-Si:H to nc-Si:H

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In the present article we report the transition regime of hydrogenated amorphous (a-Si:H) to nano-crystalline (nc-Si:H) silicon thin films in Silane (SiH4) plasma using 27.12 MHz assisted plasma enhanced chemical vapor deposition process with the approach of plasma diagnosis. The observed transitions occur within a narrow range of diverse deposition process window and hence plasma diagnosis was vital towards envisaging this variation. Impedance Analyser (V/I probe) was used to monitor plasma characteristics during growth at various process pressure (0.03–0.4 Torr) and applied power (4–20 W). Efforts were made to understand the radicals’ formation and plasma-substrate interaction by evaluating the discharge parameters such as electron density, bulk field, and sheath voltage. From the result of plasma characterizations, highest bulk field (5.7 V/cm) in combination to low sheath voltage (0.1 V) observed on 0.2 Torr pressure at 15 W power which thus provides a clear signature of transition from a-Si:H to nc-Si:H. The structural characterizations also validate the results of observed transition where in particular it was found that the mean crystallite size (4.2 nm) with high crystalline volume fraction (42%) and wider band gap (2.01 eV) with higher hydrogen content (35%) signifies the existing nano-crystalline phase. On account of these results, an empirical relation between plasma impedance and phase angle was established in terms of expansion and contraction of two distinct discharge zones (bulk and sheath) to diagnose the phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mukhopadhyay S, Chowdhury A, Ray S (2008) Thin Solid Films 516:6824–6828

    Article  CAS  Google Scholar 

  2. Kondo M, Matsuda A (2004) Thin Solid Films 457:97–102

    Article  CAS  Google Scholar 

  3. Gope J, Kumar S, Singh S, Rauthan CMS, Srivastava PC (2012) Silicon 4:127–135

    Article  CAS  Google Scholar 

  4. Parashar A, Kumar S, Gope J, Rauthan CMS, Hashmi SA, Dixit PN (2010) J Non-Cryst Solids 356:1774–1778

    Article  CAS  Google Scholar 

  5. Gope J, Kumar S, Sudhakar S, Rauthan CMS, Srivastava PC (2013) Mater Chem Phys 141:89–94

    Article  CAS  Google Scholar 

  6. Hadjadj A, Beorchia A, Cabarrocas PR, Boufendi L, Huet S, Bubendorff JL (2001) J Phys D Appl Phys 34:690

    Article  Google Scholar 

  7. Chengzhao C, Shenghua Q, Cuiqin L, Yandan W, Ping L, Chuying Y, Xuanying L (2009) Plasma Sci Technol 11:297

    Article  Google Scholar 

  8. Luysberg M, Hapke P, Carius R, Finger F (1997) Philos Mag A 75:31–47

    Article  Google Scholar 

  9. Chowdhury A, Mukhopadhyay S, Ray S (2010) Sol Energy Mater Sol Cells 94:1522–1527

    Article  CAS  Google Scholar 

  10. Yue G, Yan B, Ganguly G, Yang J, Guha S, Teplin CW (2006) Appl Phys Lett 88:263507

    Article  Google Scholar 

  11. Ehbrecht M, Kohn B, Huisken F, Laguna MA, Paillard V (1997) Phys Rev B 56:6958

    Article  CAS  Google Scholar 

  12. Veprek S, Sarott FA, Iqbal Z (1987) Phys Rev B 36:3344

    Article  CAS  Google Scholar 

  13. Koirala SP, Abu-Safe HH, Mensah SL, Naseem HA, Gordon MH (2008) Surf Coat Technol 203:602–605

    Article  CAS  Google Scholar 

  14. Oda S, Noda JI, Matsumura M (1990) Jpn J Appl Phys 29:1889

    Article  CAS  Google Scholar 

  15. Sahu BB, Han JG, Shin KS, Ishikawa K, Hori M, Miyawaki Y (2015) Plasma Sources Sci Technol 24:025019

    Article  Google Scholar 

  16. Bogdan AV, Ivaschuk AV, Koval VM (2012) Research Bulletin of NTUU Kyiv Polytechnic Institute 621:19–26

  17. Guha S, Yang J, Yan B (2013) Sol Energy Mater Sol Cells 119:1–11

    Article  CAS  Google Scholar 

  18. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Prog Photovolt Res Appl 23:1–9

    Article  Google Scholar 

  19. Kroll U, Shah A, Keppner H, Meier J, Torres P, Fischer D (1997) Sol Energy Mater Sol Cells 48:343–350

    Article  CAS  Google Scholar 

  20. Keppner H, Kroll U, Meier J, Shah A (1995) InSolid State Phenom 44:97–126

    Article  Google Scholar 

  21. Kroll U, Ziegler Y, Meier J, Keppner H, Shah A (1994) InMRS Proc 336:115

    Article  CAS  Google Scholar 

  22. Mashima H, Takeuchi Y, Noda M, Murata M, Naitou H, Kawasaki I, Kawai Y (2003) Surf Coat Technol 171:167–172

    Article  CAS  Google Scholar 

  23. Chaudhary D, Sharma M, Sudhakar S, Kumar S (2016) Silicon. doi:10.1007/s12633-015-9374-8

    Google Scholar 

  24. Sharma M, Juneja S, Sudhakar S, Chaudhary D, Kumar S (2016) Mater Sci Semicond Process 43:41–46

    Article  CAS  Google Scholar 

  25. Parashar A, Kumar S, Gope J, Rauthan CM, Dixit PN, Hashmi SA (2010) Sol Energy Mater Sol Cells 94:892–899

    Article  CAS  Google Scholar 

  26. Amanatides E, Mataras D (2001) J Appl Phys 89:1556–1566

    Article  CAS  Google Scholar 

  27. Godyak VA, Piejak RB, Alexandrovich BM (1991) IEEE Trans Plasma Sci 19:660–676

    Article  Google Scholar 

  28. Amanatides E, Hammad A, Katsia E, Mataras D (2005) J Appl Phys 97:073303

    Article  Google Scholar 

  29. Morgan WL (2010) Kinema Software BOLSIG. http://www.siglo-kinema.com/bolsig.html

  30. Parashar A, Kumar S, Dixit PN, Gope J, Rauthan CM, Hashmi SA (2008) Sol Energy Mater Sol Cells 92:1199–1204

    Article  CAS  Google Scholar 

  31. Lebib S, i Cabarrocas PR (2005) J Appl Phys 97:104334

    Article  Google Scholar 

  32. Takagi T, Hayashi R, Ganguly G, Kondo M, Matsuda A (1999) Thin Solid Films 345:75–79

    Article  CAS  Google Scholar 

  33. Smit C, Van Swaaij RA, Donker H, Petit AM, Kessels WM, Van de Sanden MC (2003) J Appl Phys 94:3582–3588

    Article  CAS  Google Scholar 

  34. Min C, Weijia Z, Tianmin W, Fei J, Guohua L, Kun D (2006) Vacuum 81:126–128

    Article  Google Scholar 

  35. Langford AA, Fleet ML, Nelson BP, Lanford WA, Maley N (1992) Phys Rev B 45:13367

    Article  CAS  Google Scholar 

  36. Müllerová J, Šutta P, Van Elzakker G, Zeman M, Mikula M (2008) Appl Surf Sci 254:3690–3695

    Article  Google Scholar 

  37. Klein S, Finger F, Carius R, Dylla T, Rech B, Grimm M, Houben L, Stutzmann M (2003) Thin Solid Films 430:202–207

    Article  CAS  Google Scholar 

  38. Budini N, Rinaldi PA, Schmidt JA, Arce RD, Buitrago RH (2010) Thin Solid Films 518:5349–5354

    Article  CAS  Google Scholar 

  39. Kruzelecky RV, Racansky D, Zukotynski S, Perz JM (1988) J Non-Cryst Solids 99:89–96

    Article  CAS  Google Scholar 

  40. Funde AM, Bakr NA, Kamble DK, Hawaldar RR, Amalnerkar DP, Jadkar SR (2008) Sol Energy Mater Sol Cells 92:1217–1223

    Article  CAS  Google Scholar 

  41. Feitknecht L, Meier J, Torres P, Zürcher J, Shah A (2002) Sol Energy Mater Sol Cells 74:539–545

    Article  CAS  Google Scholar 

  42. Chaudhary D, Sharma M, Sudhakar S, Kumar S (in press) Adv Mater Lett Proc

  43. Kondo M, Fukawa M, Guo L, Matsuda A (2000) J Non-Cryst Solids 266:84–89

    Article  Google Scholar 

  44. Lyka B, Amanatides E, Mataras D (2006) J Non-Cryst Solids 352:1049–1054

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, CSIR National Physical Laboratory, New Delhi (India) for his kind support. We are also thankful to Dr. Bhanu Pratap Singh, Mr. K.N. Sood and Mr. Jai Tawale from NPL, New Delhi for extending Raman Spectroscopy and SEM facility. We also acknowledge CSIR-India for TAPSUN program and MNRE, Govt. of India for the research grant (sanction 31/29/2010-11/PVSE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, D., Sharma, M., Sudhakar, S. et al. Plasma Impedance Analysis: A Novel Approach for Investigating a Phase Transition from a-Si:H to nc-Si:H. Plasma Chem Plasma Process 37, 189–205 (2017). https://doi.org/10.1007/s11090-016-9760-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9760-z

Keywords

Navigation