Skip to main content
Log in

Effects of Pressure and Electrode Length on the Abatement of N2O and CF4 in a Low-Pressure Plasma Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The emission of greenhouse gases, such as N2O and fluorinated gases, has been increasingly regulated in the semiconductor industry. Pressure effects on the abatement of N2O and CF4 were investigated in a low-pressure plasma reactor by using Fourier transform infrared (FTIR) spectroscopy. The destruction and removal efficiency (DRE) of N2O and CF4 was significantly lowered below 0.2 Torr. When the pressure was increased, the DRE of CF4 with H2O as the reactant gas increased continuously, but that with O2 or without any reactant gas first increased and then decreased. A larger electrode length yielded a higher DRE of N2O and CF4, especially at lower pressures. To understand this phenomenon, the electrical waveforms for the discharge in N2O were analyzed in conjunction with its optical emission profiles, and the rotational temperatures for different electrode lengths were compared using the N2 + ion band (λ = 391.4 nm). They provided insights into the mechanism involved in terms of plasma property and gas residence time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chang MB, Chang JS (2006) Ind Eng Chem Res 45:4101

    Article  CAS  Google Scholar 

  2. Liao MY, Wong K, McVittie JP, Saraswat KC (1999) J Vac Sci Technol B 17:2638

    Article  CAS  Google Scholar 

  3. Xu XP, Rauf S, Kushner MJ (2000) J Vac Sci Technol A 18:213

    Article  CAS  Google Scholar 

  4. Kiehbauch MW, Graves DB (2001) J Appl Phys 89:2047

    Article  Google Scholar 

  5. Kuroki T, Mine J, Okubo M, Yamamoto T, Saeki N (2005) IEEE Trans Ind Appl 41:215

    Article  CAS  Google Scholar 

  6. Kuroki T, Mine J, Odahara S, Okubo M, Yamamoto T, Saeki N (2005) IEEE Trans Ind Appl 41:221

    Article  CAS  Google Scholar 

  7. Suzuki K, Ishihara Y, Sakoda K, Shirai Y, Teramoto A, Hirayama M, Ohmi T, Watanabe T, Ito T (2009) J Vac Sci Technol A 27:465

    Article  CAS  Google Scholar 

  8. Hur M, Lee JO, Song YH (2011) J Korean Phys Soc 59:2742

    Article  CAS  Google Scholar 

  9. Hur M, Lee JO, Song YH, Yoo HA (2012) J Vac Sci Technol A 30:021305

    Article  Google Scholar 

  10. Hur M, Lee JO, Kang WS, Song YH (2015) Plasma Process Polym 12:583

    Article  CAS  Google Scholar 

  11. Hartz CL, Beban JW, Jackson MW, Wofford BA (1998) Environ Sci Technol 32:682

    Article  CAS  Google Scholar 

  12. Vitale SA, Sawin HH (2000) J Vac Sci Technol A 18:2217

    Article  CAS  Google Scholar 

  13. Hur M, Lee JO, Kang WS, Song YH (2014) Plasma Chem Plasma Process 34:1187

    Article  CAS  Google Scholar 

  14. Hur M, Lee JO, Lee JY, Kang WS, Song Y-H (2016) Plasma Sources Sci Technol 25:015008

    Article  Google Scholar 

  15. Tonnis EJ, Graves DB (2002) J Vac Sci Technol A 20:1787

    Article  CAS  Google Scholar 

  16. Cleland TA, Hess DW (1987) Plasma Chem Plasma Process 7:379

    Article  CAS  Google Scholar 

  17. Austin JM, Smith ALS (1973) J Phys D Appl Phys 6:2236

    Article  CAS  Google Scholar 

  18. Date L, Radouane K, Caquineau H, Despax B, Couderc JP, Yousfi M (1999) Surf Coat Technol 116–119:1042

    Article  Google Scholar 

  19. Mi L, Xu P, Wang P-N (2005) J Phys D Appl Phys 38:3885

    Article  CAS  Google Scholar 

  20. Huang X-J, Xin Y, Yang L, Yuan Q-H, Ning Z-Y (2008) Phys Plasmas 15:113504

    Article  Google Scholar 

  21. Laux CO, Spence TG, Kruger CH, Zare RN (2003) Plasma Sources Sci Technol 12:125

    Article  CAS  Google Scholar 

  22. Laux CO (2002) Radiation and nonequilibrium collisional-radiative models. In: Fletcher D, Charbonnier J-M, Sarma GSR, Magin T (eds) von Karman Institute Lecture Series 2002–07, Physico-chemical modeling of high enthalpy and plasma flows. Rhode-Saint-Genése, Belgium (www.specair-radication.net)

Download references

Acknowledgments

This work is supported by the World Class 300 Project funded by Korea Small and Medium Business Administration and by the Development program of Manufacturing Technology for Flexible Electronics with High Performance funded by Korea Institute of Machinery and Materials (KIMM). The World Class 300 project has been performed in cooperation with Lotvacuum Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hur, M., Lee, J.O., Lee, J.Y. et al. Effects of Pressure and Electrode Length on the Abatement of N2O and CF4 in a Low-Pressure Plasma Reactor. Plasma Chem Plasma Process 36, 1589–1601 (2016). https://doi.org/10.1007/s11090-016-9744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9744-z

Keywords

Navigation