Skip to main content

Advertisement

Log in

Simultaneous Removal of H2S and Dust in the Tail Gas by DC Corona Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The removal of hydrogen sulfide and dust simultaneously by the DC corona discharge plasma with a wire-cylinder reactor was studied at atmospheric pressure and room temperature. The outlet gases were analyzed by Fourier Transform Infrared. Chemical compositions of the dust collected from ground electrode were analyzed by X-ray fluorescence. The results showed that the DC corona discharge is effective in removing H2S and dust simultaneously. The best H2S conversion was gained with the 2 cm discharge gap. The lower inlet H2S concentration, the higher conversion efficiency was gained at any specific input energy (SIE), while the energy yield was on the contrary. The removal efficiency of H2S decreased gradually as oxygen concentration increased, which means that the H2S decomposition mainly depends on direct electron collisions or short-living species, such as·O, ·OH radicals in the non-thermal plasma. At the initial stage, the conversion efficiency of H2S increased with the increasing of relative humidity, but later decreased while the relative humidity keep increasing with the same SIE. Existing of dust can not only reduce the energy consumption of H2S conversion and improve the removal efficiency, but also inhibit the yield of SO2 for it can further react with some compounds in the dust. With the discharge gap of 2 cm, inlet H2S concentration of 2400 ppm, O2 Of 0.5 %, relative humidity of 41 %, dust content of 4000 ± 5 % mg/m3 and SIE of 600 J/L, the H2S conversion reached 98.8 %, and the dust removal efficiency was close to 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huang L, Xia LY, Dong WB, Hou HQ (2013) Energy efficiency in hydrogen sulfide removal by non-thermal plasma photolysis technique at atmospheric pressure. Chem Eng J 228:1066–1073

    Article  CAS  Google Scholar 

  2. Tomar M, Abdullah THA (1994) Evaluation of chemicals to control the generation of malodorous hydrogen sulfide in waste water. Water Res 28:2545–2552

    Article  CAS  Google Scholar 

  3. Liu G, Huang ZH, Kang F (2012) Preparation of ZnO/SiO2gel composites and their performance of H2S removal at room temperature. J Hazard Mater 215:166–172

    Article  Google Scholar 

  4. Liu C, Liu J, Li J, He H, Peng S, Li C, Chen Y (2013) Removal of H2S by co-immobilized bacteria and fungi biocatalysts in a bio-trickling filter. Process Saf. Enrivon. 91:145–152

    Article  CAS  Google Scholar 

  5. Peyghan AA, Baei MT, Hashemian S (2013) ZnO nanocluster as a potential catalyst for dissociation of H2S molecule. J. Clust. Sci. 24:341–347

    Article  CAS  Google Scholar 

  6. Jaber MB, Couvert A, Amrane A, Rouxel F, Cloirec PL, Dumont E (2016) Biofiltration of high concentration of H2S in waste air under extreme acidic conditions. New Biotechnol 33:136–143

    Article  Google Scholar 

  7. Zhang YW, Zhou ZJ, Wang JW, Wang ZH, Zhou JH, Cen KF (2013) Thermal efficiency evaluation of the thermochemical H2S splitting cycle for the hydrogen and sulfur production. Int J Hydrogen Energ 38:769–776

    Article  CAS  Google Scholar 

  8. Aslama Z, Shawabkeh RA, Hussein IA, Al-Baghli N, Eic M (2015) Synthesis of activated carbon from oil fly ash for removal of H2S from gas stream. Appl Surf Sci 327:107–115

    Article  Google Scholar 

  9. Marzouk SAM, Al-Marzouqi MH, Teramoto M, Abdullatif N, Ismail ZM (2012) Simultaneous removal of CO2 and H2S from pressurized CO2-H2S-CH4 gas mixture using hollow fiber membrane contactors. Sep Purif Technol 86:88–97

    Article  CAS  Google Scholar 

  10. Palma V, Barba D (2014) Low temperature catalytic oxidation of H2S over V2O5/CeO2 catalysts. Int J Hydrogen Energ 39:21524–21530

    Article  CAS  Google Scholar 

  11. Nicholas K, Zhao QB, Ma JW, Chen SL, Frear C (2015) The selective removal of H2S over CO2 from biogas in a bubble column using pretreated digester effluent. Sep Purif Technol 144:240–247

    Article  Google Scholar 

  12. Ashori E, Nazari F, Illas F (2014) Adsorption of H2S on carbonaceous materials of different dimensionality. Int J Hydrogen Energ 39:6610–6619

    Article  CAS  Google Scholar 

  13. Üresina E, Saraç Hİ, Sarıoğlan A, Ay Ş, Akgün F (2015) An experimental study for H2S and CO2 removal via caustic scrubbing system. Protection 94:196–202

    Google Scholar 

  14. Palma V, Vaiano V, Barba D, Colozzi M, Palo E, Barbato L, Cortese S (2015) H2 production by thermal decomposition of H2S in the presence of oxygen. Int J Hydrogen Energ 40:106–113

    Article  CAS  Google Scholar 

  15. Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC (2011) Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. J Phys D Appl Phys 44:1–10

    Google Scholar 

  16. Ragazzi M, Tosi P, Rada EC, Torretta V, Schiavon M (2014) Effluents from MBT plants: plasma techniques for the treatment of VOCs. Waste Manage 34:2400–2406

    Article  CAS  Google Scholar 

  17. Yan X, Sun YF, Zhu TL, Fan X (2013) Conversion of carbon disulfide in air by non-thermal plasma. J Hazard Mater 261:669–674

    Article  CAS  Google Scholar 

  18. Du CW, Yan JH, Cheron B (2007) Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sour Sci Technol 16:791–797

    Article  CAS  Google Scholar 

  19. Talebizadeh P, Babaie M, Brown R, Rahimzadeh H, Ristovski Z, Arai M (2014) The role of non-thermal plasma technique in NOx treatment: a review. Renew Sust Energ Rev 40:886–901

    Article  CAS  Google Scholar 

  20. Yu L, Tu X, Li X, Wang Y, Chi Y, Yan J (2010) Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor. J Hazard Mater 180:449–455

    Article  CAS  Google Scholar 

  21. Lu SY, Chen L, Huang QX, Yang LQ, Du CM, Li XD, Yan JH (2014) Decomposition of ammonia and hydrogen sulfide in simulated sludge drying waste gas by a novel non-thermal plasma. Chemosphere 117:781–785

    Article  CAS  Google Scholar 

  22. Byeon JH, Park JH, Jo YS, Yoon KY, Hwang J (2010) Removal of gaseous toluene and submicron aerosol particles using a dielectric barrier discharge reactor. J Hazard Mater 175:417–422

    Article  CAS  Google Scholar 

  23. Saveliev AB, Pietsch GJ, Murtazin AR, Fried A (2007) SO2 removal from air with dielectric barrier discharges. Plasma Sour Sci Technol 16:454–469

    Article  CAS  Google Scholar 

  24. Parka HW, Choib S, Parka DW (2015) Simultaneous treatment of NO and SO2 with aqueous NaClO2 solution in a wet scrubber combined with a plasma electrostatic precipitator. J Hazard Mater 285:117–126

    Article  Google Scholar 

  25. Chen HH, Weng CC, Liao JD, Whang LM, Kang WH (2012) Conversion of emitted dimethyl sulfide into eco-friendly species using low-temperature atmospheric argon micro-plasma system. J Hazard Mater 201–202:185–192

    Article  Google Scholar 

  26. Subrahmanyam Ch, Magureanu M, Renken A, Kiwi-Minsker L (2006) Catalytic abatement of volatile organic compounds assisted by non-thermal plasma Part 1. A novel dielectric barrier discharge reactor containing catalytic electrode. Appl Catal B-Environ 65:150–156

    Article  CAS  Google Scholar 

  27. Liang WJ, Fang HP, Li J, Zheng F, Li JX, Jin YQ (2011) Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide. J Electrost 69:206–213

    Article  CAS  Google Scholar 

  28. Paillol J, Espel P, Reess T, Gibert A, Domens P (2002) Negative corona in air at atmospheric pressure due to a voltage impulse. J App Phys 91:5614–5621

    Article  CAS  Google Scholar 

  29. Lu GQ, Do DD (1991) Adsorption properties of fly ash particles for NOx removal from flue gases. Fuel Process Technolo 27:95–107

    Article  CAS  Google Scholar 

  30. Zhang JB, Han F, Wei XH, Shui LK, Gong H, Zhang PY (2010) Spectral studies of hydrogen bonding and interaction in the absorption processes of sulfur dioxidein poly (ethylene glycol) 400+water binary system. Ind Eng Chem Rec 49:2025–2030

    Article  CAS  Google Scholar 

  31. Zeng YF, Liu ZL, Qin ZZ, Liu HW (2008) FTIR study of ozone adsorption on SnO2 surface. Spectrosc Spect Anal 28:1035–1038

    CAS  Google Scholar 

  32. Spagnolo V, Patimisco P, Pennetta R, Sampaolo A, Scamarcio G, Vitiello MS, Tittel FK (2015) THz Quartz-enhanced photoacoustic sensor for H2S trace gas detection. Optics Expr 23:7574–7582

    Article  Google Scholar 

  33. Rao MVVS, Srivastava SK (1993) Electron impact ionization and attachment cross sections for H2S. Geophys. Res. 98(E7):13137–13145

    Article  CAS  Google Scholar 

  34. Zhao GB, John S, Zhang JJ, Hamann JC, Muknahallipatna SS, Legowski S, Ackerman JF, Argyle MD (2007) Production of hydrogen and sulfur from hydrogen sulfide in a nonthermal-plasma pulsed corona discharge reactor. Chem Eng Sci 62:2216–2227

    Article  CAS  Google Scholar 

  35. Portela R, Suárez S, Rasmussen SB, Arconada N, Castro Y, Durán A, Ávila P, Coronado JM, Sánchez B (2010) Photocatalytic-based strategies for H2S elimination. Catal Today 151:64–70

    Article  CAS  Google Scholar 

  36. Liang WJ, Ma L, Li J, Li JX, Zheng F (2012) Control of hydrogen sulfide by a wire-tube dielectric barrier discharge AC plasma reactor. Clean-Soil Air Water 40:586–591

    Article  CAS  Google Scholar 

  37. Itikawa Y (2006) Cross sections for electron collisions with nitrogen molecules. J Phys Chem Ref Data 35:31–52

    Article  CAS  Google Scholar 

  38. Itikawa Y (2009) Cross sections for electron collisions with oxygen molecules. J Phys Chem Ref Data 38:3–19

    Article  Google Scholar 

  39. Herron JT (1999) Evaluated chemical kinetics data for reactions of N(2D), N(2P), and N2(A3 \( \sum_{u}^{ + } \)) in the gas phase, J. Phys. Chem. Ref. Data. 28: 1453–1483

  40. Demore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publication 97–4. Jet Propulsion Laboratory, California Institute of Technology, Pasadena

    Google Scholar 

  41. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Jenkin ME, Rossi MJ, Troe J (2004) Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I-gas phase reactions of Ox, HOx, NOx and SOx species. Atmos Chem Phys 4:1461–1738

    Article  CAS  Google Scholar 

  42. Subramanian E, Baeg JO, Lee SM, Moon SJ, Kong KJ (2008) Dissociation of H2S under visible light irradiation (λ ≥ 420 nm) with FeGaO3 photocatalysts for the production of hydrogen. Int J Hydrogen Energy 33:6586–6594

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U1137603, 51268021, 51568027, 51368026), 863 National High-tech Development Plan Foundation (No. 2012AA062504), High and New Technology Industry Development Project Plan of Yunnan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ping.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xueqian, W., Ke, X., Yixing, M. et al. Simultaneous Removal of H2S and Dust in the Tail Gas by DC Corona Plasma. Plasma Chem Plasma Process 36, 1545–1558 (2016). https://doi.org/10.1007/s11090-016-9743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9743-0

Keywords

Navigation